Skip to main content

Advertisement

Log in

Pathogen-induced secretory diarrhea and its prevention

  • Review
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

Secretory diarrhea is a historically known serious health implication around the world which primarily originates through pathogenic microorganisms rather than immunological or genetical disorders. This review highlights infective mechanisms of non-inflammatory secretory diarrhea causing pathogens, known therapeutics and their efficacy against them. These non-inflammatory diarrheal pathogens breach cell barriers, induce inflammation, disrupt fluid secretion across the epithelium by alteration in ion transport by faulting cystic fibrosis transmembrane conductance regulator (CFTR), calcium activated chloride channels and ion exchanger functions. Currently, a variety of prevention strategies have been used to treat these symptoms like use of antibacterial drugs, vaccines, fluid and nutritional therapy, probiotics and prebiotics as adjuncts. In progression of the need for a therapy having quick physiological effects, withdrawing the symptoms with a wide and safe therapeutic index, newer antisecretory agents like potent inhibitors, agonists and herbal remedies are some of the interventions which have come into light through greater understanding of the mechanisms and molecular targets involved in intestinal fluid secretion. Although these therapies have their own pros and cons inside the host, the quest for new antisecretory agents has been a successful elucidation to reduce burden of diarrheal disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. WHO (2013) Global Health Observatory Data Repository [online], http://www.who.int/mediacentre/factsheets/fs330/en/. Accessed 29 July 2016

  2. Feldman M, Friedman LS, Brandt LJ (2010) Sleisenger and Fordtran’s Gastrointestinal and Liver Disease 9th edn, vol 1. Saunders Elsevier, Philadelphia

    Google Scholar 

  3. Sellin JH (2000) Secretory diarrhea. Curr Treat Options Gastroenterol 3:15–23

    Article  Google Scholar 

  4. Navaneethan U, Giannella RA (2008) Mechanisms of infectious diarrhea. Nat Clin Pract Gastroenterol Hepatol 5:637–647

    Article  PubMed  Google Scholar 

  5. Nataro JP, Kaper JB (1998) Diarrheagenic Escherichia coli. Clin Microbiol Rev 11:142–201

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Croxen MA, Finlay BB (2010) Molecular mechanisms of Escherichia coli pathogenicity. Nat Rev Microbiol 8:26–38

    CAS  PubMed  Google Scholar 

  7. Gupta SK, Keck J, Ram PK, Crump JA, Miller MA, Mintz ED (2008) Part III. Analysis of data gaps pertaining to enterotoxigenic Escherichia coli infections in low and medium human development index countries, 1984–2005. Epidemiol Infect 136:721–738

    Article  CAS  PubMed  Google Scholar 

  8. Dubreuil JD (2008) Escherichia coli STb toxin and colibacillosis: knowing is half the battle. FEMS Microbiol Lett 278:137–145

    Article  CAS  PubMed  Google Scholar 

  9. Dickinson BL, Clements JD (1995) Dissociation of Escherichia coli heat-labile enterotoxin adjuvanticity from ADP-ribosyltransferase activity. Infect Immun 63:1617–1623

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Sears CL, Kaper JB (1996) Enteric bacterial toxins: mechanisms of action and linkage to intestinal secretion. Microbiol Rev 60:167

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Streatfield SJ, Sandkvist M, Sixma TK, Bagdasarian M, Hol WG, Hirst TR (1992) Intermolecular interactions between the A and B subunits of heat-labile enterotoxin from Escherichia coli promote holotoxin assembly and stability in vivo. Proc Natl Acad Sci USA 89:12140–12144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Teneberg S, Hirst TR, Ngstrom J, Karlsson K-A (1994) Comparison of the glycolipid-binding specificities of cholera toxin and porcine Escherichia coli heat-labile enterotoxin: identification of a receptor-active non-ganglioside glycolipid for the heat-labile toxin in infant rabbit small intestine. Glycoconj J 11:533–540

    Article  CAS  PubMed  Google Scholar 

  13. Kesty NC, Mason KM, Reedy M, Miller SE, Kuehn MJ (2004) Enterotoxigenic Escherichia coli vesicles target toxin delivery into mammalian cells. EMBO J 23:4538–4549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lencer WI, Constable C, Moe S, Jobling MG, Webb HM, Ruston S, Madara JL, Hirst TR, Holmes RK (1995) Targeting of cholera toxin and Escherichia coli heat labile toxin in polarized epithelia: role of COOH-terminal KDEL. J Cell Biol 131:951–962

    Article  CAS  PubMed  Google Scholar 

  15. Hug MJ, Tamada T, Bridges RJ (2003) CFTR and bicarbonate secretion to epithelial cells. Physiology 18:38–42

    Article  CAS  Google Scholar 

  16. Vaandrager AB, Tilly BC, Smolenski A, Schneider-Rasp S, Bot AG, Edixhoven M, Scholte BJ, Jarchau T, Walter U, Lohmann SM et al (1997) cGMP stimulation of cystic fibrosis transmembrane conductance regulator Cl- channels co-expressed with cGMP-dependent protein kinase type II but not type Iβ. J Biol Chem 272:4195–4200

    Article  CAS  PubMed  Google Scholar 

  17. Eklund S, Brunsson I, Jodal M, Lundgren O (1987) Changes in cyclic 3′5′-adenosine monophosphate tissue concentration and net fluid transport in the cat’s small intestine elicited by cholera toxin, arachidonic acid, vasoactive intestinal polypeptide and 5-hydroxytryptamine. Acta Physiol Scand 129:115–125

    Article  CAS  PubMed  Google Scholar 

  18. Fukuta S, Magnani JL, Twiddy EM, Holmes RK, Ginsburg V (1988) Comparison of the carbohydrate-binding specificities of cholera toxin and Escherichia coli heat-labile enterotoxins LTh-I, LT-IIa, and LT-IIb. Infect Immun 56:1748–1753

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Arriaga YL, Harville BA, Dreyfus LA (1995) Contribution of individual disulfide bonds to biological action of Escherichia coli heat-stable enterotoxin B. Infect Immun 63:4715–4720

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Rasheed JK, Guzm’an-Verduzco LM, Kupersztoch YM (1990) Two precursors of the heat-stable enterotoxin of Escherichia coli: evidence of extracellular processing. Mol Microbiol 4:265–273

    Article  CAS  PubMed  Google Scholar 

  21. Dubreuil JD (2012) The whole Shebang: the gastrointestinal tract, Escherichia coli enterotoxins and secretion. Curr Issues Mol Biol 14:71–82

    PubMed  Google Scholar 

  22. Crane JK, Oh JS (1997) Activation of host cell protein kinase C by enteropathogenic Escherichia coli. Infect Immun 65:3277–3285

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Rousset E, Harel J, Dubreuil JD (1998) Sulfatide from the pig jejunum brush border epithelial cell surface is involved in binding of Escherichia coli enterotoxin b. Infect Immun 66:5650–5658

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Fujii Y, Nomura T, Yamanaka H, Okamoto K (1997) Involvement of Ca(2+)-calmodulin-dependent protein kinase II in the intestinal secretory action of Escherichia coli heat-stable enterotoxin II. Microbiol Immunol 41:633–636

    Article  CAS  PubMed  Google Scholar 

  25. Peterson JW, Whipp SC (1995) Comparison of the mechanisms of action of cholera toxin and the heat-stable enterotoxins of Escherichia coli. Infect Immun 63:1452–1461

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Levine MM, Prado V, Robins-Browne R, Lior H, Kaper JB, Moseley SL, Gicquelais K, Nataro JP, Vial P, Tall B (1988) Use of DNA probes and HEp-2 cell adherence assay to detect diarrheagenic Escherichia coli. J Infect Dis 158:224–228

    Article  CAS  PubMed  Google Scholar 

  27. Menard LP, Dubreuil JD (2002) Enteroaggregative Escherichia coli heat-stable enterotoxin 1 (EAST1): a new toxin with an old twist. Crit Rev Microbiol 28:43–60

    Article  CAS  PubMed  Google Scholar 

  28. Veilleux S, Dubreuil JD (2006) Presence of Escherichia coli carrying the EAST1 toxin gene in farm animals. Vet Res 37:3–13

    Article  CAS  PubMed  Google Scholar 

  29. Savarino SJ, Fasano A, Watson J, Martin BM, Levine MM, Guandalini S, Guerry P (1993) Enteroaggregative Escherichia coli heat-stable enterotoxin 1 represents another subfamily of E. coli heat-stable toxin. Proc Natl Acad Sci USA 90:3093–3097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Savarino SJ, McVeigh A, Watson J, Cravioto A, Molina J, Echeverria P, Bhan MK, Levine MM, Fasano A (1996) Enteroaggregative Escherichia coli heat-stable enterotoxin is not restricted to enteroaggregative E. coli. J Infect Dis 173:1019–1022

    Article  CAS  PubMed  Google Scholar 

  31. Huang DB, Okhuysen PC, Jiang ZD, DuPont HL (2004) Enteroaggregative Escherichia coli: an emerging enteric pathogen. Am J Gastroenterol 99(2):383–389

    Article  PubMed  Google Scholar 

  32. Zhang R-G, Scott DL, Westbrook ML, Nance S, Spangler BD, Shipley GG, Westbrook EM (1995) The three-dimensional crystal structure of cholera toxin. J Mol Biol 251:563–573

    Article  CAS  PubMed  Google Scholar 

  33. Cheng SH, Rich DP, Marshall J, Gregory RJ, Welsh MJ, Smith AE (1991) Phosphorylation of the R domain by cAMP-dependent protein kinase regulates the CFTR chloride channel. Cell 66:1027–1036

    Article  CAS  PubMed  Google Scholar 

  34. Guttman JA, Finlay BB (2008) Subcellular alterations that lead to diarrhea during bacterial pathogenesis. Trends Microbiol 16:535–542

    Article  CAS  PubMed  Google Scholar 

  35. Lundgren O, Jodal M (1997) The enteric nervous system and cholera toxin—induced secretion. Comp Biochem Physiol A Physiol 118:319–327

    Article  CAS  PubMed  Google Scholar 

  36. Trucksis M, Conn TL, Wasserman SS, Sears CL (2000) Vibrio cholerae ACE stimulates Ca2+−dependent Cl-/HCO3- secretion in T84 cells in vitro. Am J Physiol Cell Physiol 279:C567–C577

    CAS  PubMed  Google Scholar 

  37. Krasilnikov OV, Muratkhodjaev JN, Zitzer AO (1992) The mode of action of Vibrio cholerae cytolysin. The influences on both erythrocytes and planar lipid bilayers. Biochim Biophys Acta 1111:7–16

    Article  CAS  PubMed  Google Scholar 

  38. Visweswariah SS, Shanthi G, Balganesh TS (1992) Interaction of heat-stable enterotoxins with human colonie (T84) cells: modulation of the activation of guanylyl cyclase. Microb Pathog 12:209–218

    Article  CAS  PubMed  Google Scholar 

  39. Wang W, Uzzau S, Goldblum SE, Fasano A (2000) Human zonulin, a potential modulator of intestinal tight junctions. J Cell Sci 113:4435–4440

    CAS  PubMed  Google Scholar 

  40. Wu Z, Nybom P, Magnusson K-E (2000) Distinct effects of Vibrio cholerae haemagglutinin/protease on the structure and localization of the tight junction-associated proteins occludin and ZO-1. Cell Microbiol 2:11–17

    Article  CAS  PubMed  Google Scholar 

  41. Uzzau S, Cappuccinelli P, Fasano A (1999) Expression of Vibrio cholerae zonula occludens toxin and analysis of its subcellular localization. Microb Pathog 27:377–385

    Article  CAS  PubMed  Google Scholar 

  42. Hodges K, Gill R (2010) Infectious diarrhea: cellular and molecular mechanisms. Gut Microbes 1:4–21

    Article  PubMed  PubMed Central  Google Scholar 

  43. Hodges K, Alto NM, Ramaswamy K, Dudeja PK, Hecht G (2008) The enteropathogenic Escherichia coli effector protein EspF decreases sodium hydrogen exchanger 3 activity. Cell Microbiol 10:1735–1745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hecht G, Hodges K, Gill RK, Kear F, Tyagi S, Malakooti J, Ramaswamy K, Dudeja PK (2004) Differential regulation of Na+/H+ exchange isoform activities by enteropathogenic E. coli in human intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol 287:G370–G378

    Article  CAS  PubMed  Google Scholar 

  45. Makela (2002) SLC26A3 mutations in congenital chloride diarrhea. Hum Mutat 20:425–438

    Article  CAS  PubMed  Google Scholar 

  46. Gill RK, Borthakur A, Hodges K, Turner JR, Clayburgh DR, Saksena S, Zaheer A, Ramaswamy K, Hecht G, Dudeja PK (2007) Mechanism underlying inhibition of intestinal apical Cl-- /OH--exchange following infection with enteropathogenic E. coli. J Clin Invest 117:428–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dean P, Maresca M, Schuller S, Phillips AD, Kenny B (2006) Potent diarrheagenic mechanism mediated by the cooperative action of three enteropathogenic Escherichia coli-injected effector proteins. Proc Natl Acad Sci USA 103:1876–1881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Borthakur A, Gill RK, Hodges K, Ramaswamy K, Hecht G, Dudeja PK (2006) Enteropathogenic Escherichia coli inhibits butyrate uptake in Caco-2 cells by altering the apical membrane MCT1 level. Am J Physiol Gastrointest Liver Physiol 290:G30–G35

    Article  CAS  PubMed  Google Scholar 

  49. Gill RK, Saksena S, Tyagi S, Alrefai WA, Malakooti J, Sarwar Z, Turner JR, Ramaswamy K, Dudeja PK (2005) Serotonin inhibits Na+/H+ exchange activity via 5-HT4 receptors and activation of PKC in human intestinal epithelial cells. Gastroenterology 128:962–974

    Article  CAS  PubMed  Google Scholar 

  50. Blacklow NR, Greenberg HB (1991) Viral gastroenteritis. N Engl J Med 325:252–264

    Article  CAS  PubMed  Google Scholar 

  51. Tate JE, Burton AH, Boschi-Pinto C, Steele AD, Duque J, Parashar UD et al (2012) 2008 estimate of worldwide rotavirus-associated mortality in children younger than 5 years before the introduction of universal rotavirus vaccination programmes: a systematic review and meta-analysis. Lancet Infect Dis 12:136–141

    Article  PubMed  Google Scholar 

  52. Sen A, Rott L, Phan N, Mukherjee G, Greenberg HB (2014) Rotavirus NSP1 protein inhibits interferon-mediated STAT1 activation. J Virol 88:41–53

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Lorrot M, Vasseur M (2007) Physiopathology of Rotavirus diarrhea. Arch Pediatr 14:S145–51

    Article  PubMed  Google Scholar 

  54. Halaihel N, Li’evin V, Alvarado F, Vasseur M (2000) Rotavirus infection impairs intestinal brush-border membrane Na+−solute cotransport activities in young rabbits. Am J Physiol Gastrointest Liver Physiol 279:G587–G596

    CAS  PubMed  Google Scholar 

  55. Jourdan N, Brunet JP, Sapin C, Blais A, Cotte-Laffitte J, Forestier F, Quero A-M, Trugnan G, Servin AL (1998) Rotavirus infection reduces sucrase-isomaltase expression in human intestinal epithelial cells by perturbing protein targeting and organization of microvillar cytoskeleton. J Virol 72:7228–7236

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Estes MK, Prasad BV, Atmar RL (2006) Noroviruses everywhere: has something changed? Curr Opin Infect Dis 19:467–474

    Article  PubMed  Google Scholar 

  57. Javier B, Rodriguez-Diaz J (2006) Molecular virology of enteric viruses (with emphasis on caliciviruses). In: Viruses in Foods. Springer, pp 43–100

  58. Huang P, Farkas T, Zhong W, Tan M, Thornton S, Morrow AL, Jiang X (2005) Norovirus and histo-blood group antigens: demonstration of a wide spectrum of strain specificities and classification of two major binding groups among multiple binding patterns. J Virol 79:6714–6722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kuyumcu-Martinez M, Belliot G, Sosnovtsev SV, Chang KO, Green KY, Lloyd RE (2004) Calicivirus 3C-like proteinase inhibits cellular translation by cleavage of poly (A)-binding protein. J Virol 78:8172–8182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ettayebi K, Hardy ME (2003) Norwalk virus nonstructural protein p48 forms a complex with the SNARE regulator VAP-A and prevents cell surface expression of vesicular stomatitis virus G protein. J Virol 77:11790–11797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Troeger H, Loddenkemper C, Schneider T, Schreier E, Epple H-J, Zeitz M, Fromm M, Schulzke JD (2009) Structural and functional changes of the duodenum in human norovirus infection. Gut 58:1070–1077

    Article  CAS  PubMed  Google Scholar 

  62. Muller N, Von Allmen N (2005) Recent insights into the mucosal reactions associated with Giardia lamblia infections. Int J Parasitol 35:1339–1347

    Article  CAS  PubMed  Google Scholar 

  63. Buret A, Hardin JA, Olson ME, Gall DG (1992) Pathophysiology of small intestinal malabsorption in gerbils infected with Giardia lamblia. Gastroenterology 103:506–13

    Article  CAS  PubMed  Google Scholar 

  64. Resta-Lenert S, Langford TD, Gillin FD, Barrett KE (2000) Altered chloride secretory responses in HT29/Cl. 19A cells infected with Giardia lamblia. Gastroenterology 118:A684

  65. Gorowara S, Ganguly NK, Mahajan RC, Walia BN (1992) Study on the mechanism of Giardia lambdia induced diarrhoea in mice. BBA Mol Basis Dis 1138:122–126

    Article  CAS  Google Scholar 

  66. Buret AG (2007) Mechanisms of epithelial dysfunction in giardiasis. Gut 56:316–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chin AC, Teoh DA, Scott KGE, Meddings JB, Macnaughton WK, Buret AG (2002) Strain-dependent induction of enterocyte apoptosis by Giardia lamblia disrupts epithelial barrier function in a caspase-3-dependent manner. Infect Immun 70:3673–3680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. DuPont HL (2009) Bacterial diarrhea. N Engl J Med 361:1560–1569

    Article  CAS  PubMed  Google Scholar 

  69. Wagner A, Wiedermann U (2009) Travellers’ diarrhoea—pros and cons of different prophylactic measures. Wien Klin Wochenschr 121:13–18

    Article  PubMed  Google Scholar 

  70. Rademaker C, Hoepelman IM, Wolfhagen M, Beumer H, Rozenberg-Arska M, Verhoef J (1989) Results of a double-blind placebo-controlled study using ciprofloxacin for prevention of travelers’ diarrhea. Eur J Clin Microbiol Infect Dis 8:690–694

    Article  CAS  PubMed  Google Scholar 

  71. Wistrom J, Norrby SR, Burman LG, Lundholm R, Jellheden B, Englund G (1987) Norfloxacin versus placebo for prophylaxis against travellers’ diarrhoea. J Antimicrob Chemother 20:563–574

    Article  CAS  PubMed  Google Scholar 

  72. Johnson PC, Ericsson CD, Morgan DR, DuPont HL, Cabada FJ (1986) Lack of emergence of resistant fecal flora during successful prophylaxis of traveler’s diarrhea with norfloxacin. Antimicrob Agents Chemother 30:671–674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Mehlhorn AJ, Brown DA (2007) Safety concerns with fluoroquinolones. Ann Pharmacother 41:1859–1866

    Article  PubMed  CAS  Google Scholar 

  74. Ruiz J, Mensa L, O’Callaghan C, Pons MJ, Gonz’alez A, Vila J, Gasc’on J (2007) In vitro antimicrobial activity of rifaximin against enteropathogens causing traveler’s diarrhea. Diagn Microbiol Infect Dis 59:473–475

    Article  CAS  PubMed  Google Scholar 

  75. Fuller JD, Low DE (2005) A review of Streptococcus pneumoniae infection treatment failures associated with fluoroquinolone resistance. Clin Infect Dis 41:118–121

    Article  PubMed  Google Scholar 

  76. Nelson JM, Smith KE, Vugia DJ, Rabatsky-Ehr T, Segler SD, Kassenborg HD, Zansky SM, Joyce K, Marano N, Hoekstra RM et al (2004) Prolonged diarrhea due to ciprofloxacin-resistant Campylobacter infection. J Infect Dis 190:1150–1157

    Article  PubMed  Google Scholar 

  77. Isenbarger DW, Hoge CW, Srijan A, Pitarangsi C, Vithayasai N, Bodhidatta L, Hickey KW, Cam PD (2002) Comparative antibiotic resistance of diarrheal pathogens from Vietnam and Thailand, 1996–1999. Emerg Infect Dis 8:175–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ericsson CD (2005) Nonantimicrobial agents in the prevention and treatment of traveler’s diarrhea. Clin Infect Dis 41:S557–S563

    Article  CAS  PubMed  Google Scholar 

  79. DuPont HL, Ericsson CD, Johnson PC, Bitsura JAM, DuPont MW, de la Cabada FJ (1987) Prevention of travelers’ diarrhea by the tablet formulation of bismuth subsalicylate. JAMA 257:1347–1350

    Article  CAS  PubMed  Google Scholar 

  80. DuPont HL, Jiang Z-D, Okhuysen PC, Ericsson CD, de la Cabada FJ, Ke S, DuPont MW, Martinez-Sandoval F (2005) A randomized, double-blind, placebo-controlled trial of rifaximin to prevent travelers’ diarrhea. Ann Intern Med 142:805–812

    Article  CAS  PubMed  Google Scholar 

  81. Chang L, Chey WD, Drossman DA, Lembo A, Pimentel M, Schoenfeld PS, Yu J, Merchant K, Paterson C, Bortey E, others (2012) Tu1403 Safety and tolerability profile of rifaximin for treatment of IBS without constipation: results of a pooled analysis of double-blind, placebo-controlled randomized controlled trials. Gastroenterology 142:S-823

  82. Heel RC, Brogden RN, Speight TM, Avery GS (1978) Loperamide: a review of its pharmacological properties and therapeutic efficacy in diarrhoea. Drugs 15:33–52

    Article  CAS  PubMed  Google Scholar 

  83. Van Loon FP, Bennish ML, Speelman P, Butler C (1989) Double blind trial of loperamide for treating acute watery diarrhoea in expatriates in Bangladesh. Gut 30:492–495

    Article  PubMed  PubMed Central  Google Scholar 

  84. Menees S, Saad R, Chey WD (2012) Agents that act luminally to treat diarrhoea and constipation. Nat Rev Gastroenterol Hepatol 9:661–674

    Article  CAS  PubMed  Google Scholar 

  85. Tradtrantip L, Namkung W, Verkman AS (2010) Crofelemer, an antisecretory antidiarrheal proanthocyanidin oligomer extracted from Croton lechleri, targets two distinct intestinal chloride channels. Mol Pharmacol 77:69–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Mangel AW, Chaturvedi P (2008) Evaluation of crofelemer in the treatment of diarrhea-predominant irritable bowel syndrome patients. Digestion 78:180–186

    Article  CAS  PubMed  Google Scholar 

  87. Clemens JD, Sack DA, Harris JR, Chakraborty J, Neogy P, Stanton B, Huda N, Khan MU, Kay BA, Khan MR et al (1988) Cross-protection by B subunit-whole cell cholera vaccine against diarrhea associated with heat-labile toxin-producing enterotoxigenic Escherichia coli: results of a large-scale field trial. J Infect Dis 158:372–377

    Article  CAS  PubMed  Google Scholar 

  88. Torrell JMR, Aumatell CM, Ramos SM, Mestre LG, Salas CM (2009) Reduction of travellers’ diarrhoea by WC/rBS oral cholera vaccine in young, high-risk travellers. Vaccine 27:4074–4077

    Article  PubMed  Google Scholar 

  89. Ahmed T, Bhuiyan TR, Zaman K, Sinclair D, Qadri F (2013) Vaccines for preventing enterotoxigenic Escherichia coli (ETEC) diarrhoea. Cochrane Database Syst Rev 7, CD009029

    PubMed  Google Scholar 

  90. Yu J, Cassels F, Scharton-Kersten T, Hammond SA, Hartman A, Angov E, Corth’esy B, Alving C, Glenn G (2002) Transcutaneous immunization using colonization factor and heat-labile enterotoxin induces correlates of protective immunity for enterotoxigenic Escherichia coli. Infect Immun 70:1056–1068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Frech SA, DuPont HL, Bourgeois AL, McKenzie R, Belkind-Gerson J, Figueroa JF, Okhuysen PC, Guerrero NH, Martinez-Sandoval FG, Mel’endez-Romero JH, Jiang ZD, Asturias EJ, Halpern J, Torres OR, Hoffman AS, Villar CP, Kassem RN, Flyer DC, Andersen BH, Kazempour K, Breisch SA, Glenn GM (2008) Use of a patch containing heat-labile toxin from Escherichia coli against travellers’ diarrhoea: a phase II, randomized, double-blind, placebo-controlled field trial. Lancet 371:2019–2025

    Article  CAS  PubMed  Google Scholar 

  92. Behrens RH, Cramer JP, Jelinek T, Shaw H, von Sonnenburg F, Wilbraham D, Weinke T, Bell DJ, Asturias E, Pauwells HLE, Maxwell R, Paredes MP, Glenn GM, Dewasthaly S, Stablein DM, Jiang ZD, Dupont HL (2014) Efficacy and safety of a patch vaccine containing heat-labile toxin from Escherichia coli against travellers’ diarrhoea: a phase 3, randomised, double-blind, placebo-controlled field trial in travellers from Europe to Mexico and Guatemala. Lancet Infect Dis 14:197–204

    Article  CAS  PubMed  Google Scholar 

  93. Roberto M, Mercedes P-P, Glenn GM, Shailesh D, Stablein DM, Zhi-Dong J, DuPont HL, Dennehy PH (2008) Rotavirus vaccines: an overview. Clin Microbiol Rev 21:198–208

    Article  CAS  Google Scholar 

  94. Midthun K, Kapikian AZ (1996) Rotavirus vaccines: an overview. Clin Microbiol Rev 9:423–434

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Peter G, Myers MG (2002) Intussusception, rotavirus, and oral vaccines: summary of a workshop. Pediatrics 110:e67

    Article  PubMed  Google Scholar 

  96. Rha B, Tate JE, Payne DC, Cortese MM, Lopman BA, Curns AT, Parashar UD (2014) Effectiveness and impact of rotavirus vaccines in the United States--2006--2012. Expert Rev Vaccines 13:365–376

    Article  CAS  PubMed  Google Scholar 

  97. Cortes JE, Curns AT, Tate JE, Cortese MM, Patel MM, Zhou F, Parashar UD (2011) Rotavirus vaccine and health care utilization for diarrhea in US children. N Engl J Med 365:1108–1117

    Article  CAS  PubMed  Google Scholar 

  98. Heaton PM, Ciarlet M (2007) The pentavalent rotavirus vaccine: discovery to licensure and beyond. Clin Infect Dis 45:1618–1624

    Article  PubMed  Google Scholar 

  99. Kirkwood CD (2010) Genetic and antigenic diversity of human rotaviruses: potential impact on vaccination programs. J Infect Dis 202:S43–S48

    Article  CAS  PubMed  Google Scholar 

  100. O’Ryan M, Linhares AC (2009) Update on Rotarix™: an oral human rotavirus vaccine. Expert Rev Vaccines 8:1627–1641

    Article  PubMed  Google Scholar 

  101. Wang C-M, Chen S-C, Chen K-T (2015) Current status of rotavirus vaccines. World J Pediatr 11:300–308

    Article  CAS  PubMed  Google Scholar 

  102. Bhandari N, Rongsen-Chandola T, Bavdekar A, John J, Antony K, Taneja S, Goyal N, Kawade A, Kang G, Rathore SS et al (2014) Efficacy of a monovalent human-bovine (116E) rotavirus vaccine in Indian infants: a randomised, double-blind, placebo-controlled trial. Lancet 383:2136–2143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Casburn-Jones AC, Farthing M (2004) Management of infectious diarrhoea. Gut 53:296–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. International Study Group on Reduced-Osmolality ORS Solutions (1995) Multicentre evaluation of reduced-osmolality oral rehydration salts solution. Lancet 346:282–5

    Article  Google Scholar 

  105. Thillainayagam AV, Hunt JB, Farthing MJ (1998) Enhancing clinical efficacy of oral rehydration therapy: is low osmolality the key? Gastroenterology 114:197–210

    Article  CAS  PubMed  Google Scholar 

  106. Czerwionka-Szaflarska M, Murawska S, Swincow G (2009) Evaluation of influence of oral treatment with probiotic and/or oral rehydration solution on course of acute diarrhoea in children. Prz Gastroenterol 4:166–U8

    Google Scholar 

  107. Passariello A, Terrin G, De Marco G, Cecere G, Ruotolo S, Marino A, Cosenza L, Tardi M, Nocerino R, Canani RB (2011) Efficacy of a new hypotonic oral rehydration solution containing zinc and prebiotics in the treatment of childhood acute diarrhea: a randomized controlled trial. J Pediatr 158:288–292

    Article  CAS  PubMed  Google Scholar 

  108. Oli MW, Petschow BW, Buddington RK (1998) Evaluation of fructooligosaccharide supplementation of oral electrolyte solutions for treatment of diarrhea (Recovery of the intestinal bacteria). Dig Dis Sci 43:138–147

    Article  CAS  PubMed  Google Scholar 

  109. FAO/WHO (2002) Joint FAO/WHO working group report on drafting guidelines for the evaluation of probiotics in food. London, Ontario, Canada, 30

  110. Salminen S (2001) Human studies on probiotics: aspects of scientific documentation. Scand J Nutr 1:01

    Google Scholar 

  111. Guarino A, Albano F, Ashkenazi S, Gendrel D, Hoekstra JH, Shamir R, Szajewska H, ESPGHAN/ESPID Evidence-Based Guidelines for the Management of Acute Gastroenteritis in Children in Europe Expert working group (2008) European Society for Paediatric Gastroenterology, Hepatology, and Nutrition/European Society for Paediatric Infectious Diseases evidence-based guidelines for the management of acute gastroenteritis in children in Europe: executive summary. J Pediatr Gastroenterol Nutr 46:619–621

    Article  PubMed  Google Scholar 

  112. Sanders ME, Guarner F, Guerrant R, Holt PR, Quigley EM, Sartor RB, Sherman PM, Mayer EA (2013) An update on the use and investigation of probiotics in health and disease. Gut 62:787–796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Allen SJ, Martinez EG, Gregorio GV, Dans LF (2010) Probiotics for treating acute infectious diarrhoea. Cochrane Database Syst Rev 11, CD003048

    PubMed  Google Scholar 

  114. McFarland LV (2007) Meta-analysis of probiotics for the prevention of traveler’s diarrhea. Travel Med Infect Dis 5:97–105

    Article  PubMed  Google Scholar 

  115. Feizizadeh S, Salehi-Abargouei A, Akbari V (2014) Efficacy and safety of Saccharomyces boulardii for acute diarrhea. Pediatrics 134:e176–e191

    Article  PubMed  Google Scholar 

  116. Zhang Y, Zhang L, Du M, Yi H, Guo C, Tuo Y, Han X, Li J, Zhang L, Yang L (2011) Antimicrobial activity against Shigella sonnei and probiotic properties of wild lactobacilli from fermented food. Microbiol Res 167:27–31

    Article  PubMed  CAS  Google Scholar 

  117. Spinler JK, Taweechotipatr M, Rognerud CL, Ou CN, Tumwasorn S, Versalovic J (2008) Human-derived probiotic Lactobacillus reuteri demonstrate antimicrobial activities targeting diverse enteric bacterial pathogens. Anaerobe 14:166–171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Ogawa M, Shimizu K, Nomoto K, Tanaka R, Hamabata T, Yamasaki S, Takeda T, Takeda Y (2001) Inhibition of in vitro growth of Shiga toxin-producing Escherichia coli O157: H7 by probiotic Lactobacillus strains due to production of lactic acid. Int J Food Microbiol 68:135–140

    Article  CAS  PubMed  Google Scholar 

  119. Lievin-Le Moal V, Amsellem R, Servin AL, Coconnier MH (2002) Lactobacillus acidophilus (strain LB) from the resident adult human gastrointestinal microflora exerts activity against brush border damage promoted by a diarrhoeagenic Escherichia coli in human enterocyte-like cells. Gut 50:803–811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Coconnier M-H, Li’evin V, Bernet-Camard M-F, Hudault S, Servin AL (1997) Antibacterial effect of the adhering human Lactobacillus acidophilus strain LB. Antimicrob Agents Chemother 41:1046–1052

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Silva M, Jacobus NV, Deneke C, Gorbach SL (1987) Antimicrobial substance from a human Lactobacillus strain. Antimicrob Agents Chemother 31:1231–1233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Colb’ere-Garapin F, Martin-Latil S, Blondel B, Mousson L, Pelletier I, Autret A, Francois A, Niborski V, Grompone G, Catonnet G et al (2007) Prevention and treatment of enteric viral infections: possible benefits of probiotic bacteria. Microb Infect 9:1623–1631

    Article  CAS  Google Scholar 

  123. Sassone-Corsi M, Raffatellu M (2015) No vacancy: how beneficial microbes cooperate with immunity to provide colonization resistance to pathogens. J Immunol 194:4081–4087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Makras L, Triantafyllou V, Fayol-Messaoudi D, Adriany T, Zoumpopoulou G, Tsakalidou E, Servin A, De Vuyst L (2006) Kinetic analysis of the antibacterial activity of probiotic lactobacilli towards Salmonella enterica serovar Typhimurium reveals a role for lactic acid and other inhibitory compounds. Res Microbiol 157:241–247

    Article  CAS  PubMed  Google Scholar 

  125. Collado MC, Hern’andez M, Sanz Y (2005) Production of bacteriocin-like inhibitory compounds by human fecal Bifidobacterium strains. J Food Protect 68:1034–1040

    CAS  Google Scholar 

  126. Bevins CL, Salzman NH (2011) Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nat Rev Microbiol 9:356–368

    Article  CAS  PubMed  Google Scholar 

  127. Melo MN, Ferre R, Castanho MA (2009) Antimicrobial peptides: linking partition, activity and high membrane-bound concentrations. Nat Rev Microbiol 7:245–250

    Article  CAS  PubMed  Google Scholar 

  128. Lu R, Fasano S, Madayiputhiya N, Morin NP, Nataro J, Fasano A (2009) Isolation, identification, and characterization of small bioactive peptides from Lactobacillus GG conditional media that exert both anti-Gram-negative and Gram-positive bactericidal activity. J Pediatr Gastroenterol Nutr 49:23–30

    Article  CAS  PubMed  Google Scholar 

  129. Fayol-Messaoudi D, Berger CN, Coconnier-Polter M-H, Lievin-Le Moal V, Servin AL (2005) pH-, Lactic acid-, and non-lactic acid-dependent activities of probiotic Lactobacilli against Salmonella enterica Serovar Typhimurium. Appl Environ Microbiol 71:6008–6013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Pridmore RD, Pittet A-C, Praplan F, Cavadini C (2008) Hydrogen peroxide production by Lactobacillus johnsonii NCC 533 and its role in anti-Salmonella activity. FEMS Microbiol Lett 283:210–215

    Article  CAS  PubMed  Google Scholar 

  131. Coyne CB, Bergelson JM (2006) Virus-induced Abl and Fyn kinase signals permit coxsackievirus entry through epithelial tight junctions. Cell 124:119–131

    Article  CAS  PubMed  Google Scholar 

  132. Rossen JW, Bouma J, Raatgeep RH, Buller HA, Einerhand AW (2004) Inhibition of cyclooxygenase activity reduces rotavirus infection at a postbinding step. J Virol 78:9721–9730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Freitas M, Tavan E, Cayuela C, Diop L, Sapin C, Trugnan G (2003) Host-pathogens cross-talk. Indigenous bacteria and probiotics also play the game. Biol Cell 95:503–506

    Article  PubMed  Google Scholar 

  134. Guti’errez S, Mart’nez-Blanco H, Rodr’guez-Aparicio LB, Ferrero MA (2016) Effect of fermented broth from lactic acid bacteria on pathogenic bacteria proliferation. J Dairy Sci 99(4):2654–65

    Article  CAS  Google Scholar 

  135. Gueimonde M, Margolles A, Clara G, Salminen S (2007) Competitive exclusion of enteropathogens from human intestinal mucus by Bifidobacterium strains with acquired resistance to bile—A preliminary study. Int J Food Microbiol 113:228–232

    Article  PubMed  Google Scholar 

  136. Collado MC, Meriluoto J, Salminen S (2008) Adhesion and aggregation properties of probiotic and pathogen strains. Eur Food Res Technol 226:1065–1073

    Article  CAS  Google Scholar 

  137. Lee Y-K, Puong K-Y, Ouwehand AC, Salminen S (2003) Displacement of bacterial pathogens from mucus and Caco-2 cell surface by lactobacilli. J Med Microbiol 52:925–930

    Article  PubMed  Google Scholar 

  138. Servin AL, Coconnier M-H (2003) Adhesion of probiotic strains to the intestinal mucosa and interaction with pathogens. Best Pract Res Clin Gastroenterol 17:741–754

    Article  CAS  PubMed  Google Scholar 

  139. McGuckin MA, Lind’en SK, Sutton P, Florin TH (2011) Mucin dynamics and enteric pathogens. Nat Rev Microbiol 9:265–278

    Article  CAS  PubMed  Google Scholar 

  140. Dhanani AS, Bagchi T (2013) The expression of adhesin EF-Tu in response to mucin and its role in Lactobacillus adhesion and competitive inhibition of enteropathogens to mucin. J Appl Microbiol 115:546–554

    Article  CAS  PubMed  Google Scholar 

  141. Kankainen M, Paulin L, Tynkkynen S, von Ossowski I, Reunanen J, Partanen P, Satokari R, Vesterlund S, Hendrickx AP, Lebeer S et al (2009) Comparative genomic analysis of Lactobacillus rhamnosus GG reveals pili containing a human-mucus binding protein. Proc Natl Acad Sci USA 106:17193–17198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. van Pijkeren J-P, Canchaya C, Ryan KA, Li Y, Claesson MJ, Sheil B, Steidler L, O’Mahony L, Fitzgerald GF, van Sinderen D et al (2006) Comparative and functional analysis of sortase-dependent proteins in the predicted secretome of Lactobacillus salivarius UCC118. Appl Environ Microbiol 72:4143–4153

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Altermann E, Russell WM, Azcarate-Peril MA, Barrangou R, Buck BL, McAuliffe O, Souther N, Dobson A, Duong T, Callanan M et al (2005) Complete genome sequence of the probiotic lactic acid bacterium Lactobacillus acidophilus NCFM. Proc Natl Acad Sci USA 102:3906–3912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Buck BL, Altermann E, Svingerud T, Klaenhammer TR (2005) Functional analysis of putative adhesion factors in Lactobacillus acidophilus NCFM. Appl Environ Microbiol 71:8344–8351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Pretzer G, Snel J, Molenaar D, Wiersma A, Bron PA, Lambert J, de Vos WM, van der Meer R, Smits MA, Kleerebezem M (2005) Biodiversity-based identification and functional characterization of the mannose-specific adhesin of Lactobacillus plantarum. J Bacteriol 187:6128–6136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Pridmore RD, Berger B, Desiere F, Vilanova D, Barretto C, Pittet A-C, Zwahlen M-C, Rouvet M, Altermann E, Barrangou R et al (2004) The genome sequence of the probiotic intestinal bacterium Lactobacillus johnsonii NCC 533. Proc Natl Acad Sci USA 101:2512–2517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Mack DR, Michail S, Wei S, McDougall L, Hollingsworth MA (1999) Probiotics inhibit enteropathogenic E. coli adherence in vitro by inducing intestinal mucin gene expression. Am J Physiol Gastrointest Liver Physiol 276:G941–G950

    CAS  Google Scholar 

  148. Bruce AW, Reid G (1988) Intravaginal instillation of lactobacilli for prevention of recurrent urinary tract infections. Can J Microbiol 34:339–343

    Article  CAS  PubMed  Google Scholar 

  149. Chan RC, Reid G, Irvin RT, Bruce AW, Costerton JW (1985) Competitive exclusion of uropathogens from human uroepithelial cells by Lactobacillus whole cells and cell wall fragments. Infect Immun 47:84–89

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Reid G, Chan RC, Bruce AW, Costerton JW (1985) Prevention of urinary tract infection in rats with an indigenous Lactobacillus casei strain. Infect Immun 49:320–324

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Bernet M-F, Brassart D, Neeser JR, Servin AL (1993) Adhesion of human bifidobacterial strains to cultured human intestinal epithelial cells and inhibition of enteropathogen-cell interactions. Appl Environ Microbiol 59:4121–4128

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Lievin V, Peiffer I, Hudault S, Rochat F, Brassart D, Neeser JR, Servin AL (2000) Bifidobacterium strains from resident infant human gastrointestinal microflora exert antimicrobial activity. Gut 47:646–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. P’erez PF, Minnaard J, Rouvet M, Knabenhans C, Brassart D, De Antoni GL, Schiffrin EJ (2001) Inhibition of Giardia intestinalis by Extracellular Factors from Lactobacilli: an in vitro Study. Appl Environ Microbiol 67:5037–5042

    Article  Google Scholar 

  154. Brocklehurst TF, Lund BM (1990) The influence of pH, temperature and organic acids on the initiation of growth of Yersinia enterocolitica. J Appl Microbiol 69:390–397

    CAS  Google Scholar 

  155. Carey CM, Kostrzynska M, Ojha S, Thompson S (2008) The effect of probiotics and organic acids on Shiga-toxin 2 gene expression in enterohemorrhagic Escherichia coli O157: H7. J Microbiol Meth 73:125–132

    Article  CAS  Google Scholar 

  156. Medellin-Pena MJ, Wang H, Johnson R, Anand S, Griffiths MW (2007) Probiotics affect virulence-related gene expression in Escherichia coli O157: H7. Appl Environ Microbiol 73:4259–4267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Hecht G (2001) Microbes and microbial toxins: paradigms for microbial-mucosal interactions. VII. Enteropathogenic Escherichia coli: physiological alterations from an extracellular position. Am J Physiol Gastrointest Liver Physiol 281:G1–7

    CAS  PubMed  Google Scholar 

  158. Klingberg TD, Pedersen MH, Cencic A, Budde BB (2005) Application of measurements of transepithelial electrical resistance of intestinal epithelial cell monolayers to evaluate probiotic activity. Appl Environ Microbiol 71:7528–7530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Czerucka D, Dahan S, Mograbi B, Rossi B, Rampal P (2000) Saccharomyces boulardii preserves the barrier function and modulates the signal transduction pathway induced in enteropathogenic Escherichia coli-infected T84 cells. Infect Immun 68:5998–6004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Fukuda S, Toh H, Hase K, Oshima K, Nakanishi Y, Yoshimura K, Tobe T, Clarke JM, Topping DL, Suzuki T et al (2011) Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 469:543–547

    Article  CAS  PubMed  Google Scholar 

  161. Lenoir-Wijnkoop I, Sanders ME, Cabana MD, Caglar E, Corthier G, Rayes N, Sherman PM, Timmerman HM, Vaneechoutte M, Van Loo J et al (2007) Probiotic and prebiotic influence beyond the intestinal tract. Nutr Rev 65:469–489

    Article  PubMed  Google Scholar 

  162. Gibson GR, McCartney AL, Rastall RA (2005) Prebiotics and resistance to gastrointestinal infections. Br J Nutr 93:S31–S34

    Article  CAS  PubMed  Google Scholar 

  163. Topping DL, Fukushima M, Bird AR (2003) Resistant starch as a prebiotic and synbiotic: state of the art. Proc Nutr Soc 62:171–176

    Article  CAS  PubMed  Google Scholar 

  164. Scheppach W, Luehrs H, Menzel T (2001) Beneficial health effects of low-digestible carbohydrate consumption. Br J Nutr 85:S23–S30

    Article  CAS  PubMed  Google Scholar 

  165. Likotrafiti E, Tuohy KM, Gibson GR, Rastall RA (2013) Development of antimicrobial synbiotics using potentially-probiotic faecal isolates of Lactobacillus fermentum and Bifidobacterium longum. Anaerobe 20:5–13

    Article  CAS  PubMed  Google Scholar 

  166. Saran S, Bisht MS, Singh K, Teotia U (2012) Comparing adhesion attributes of two isolates of Lactobacillus acidophilus for assessment of prebiotics, honey and inulin. IJSRP 2:2250–3153

    Google Scholar 

  167. Shoaf-Sweeney KD, Hutkins RW (2008) Adherence, anti-adherence, and oligosaccharides: preventing pathogens from sticking to the host. Adv Food Nutr Res 55:101–161

    Article  CAS  Google Scholar 

  168. Bode L (2012) Human milk oligosaccharides: every baby needs a sugar mama. Glycobiology 22:1147–1162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Kunz C, Rudloff S, Baier W, Klein N, Strobel S (2000) Oligosaccharides in human milk: structural, functional, and metabolic aspects. Annu Rev Nutr 20:699–722

    Article  CAS  PubMed  Google Scholar 

  170. Shoaf K, Mulvey GL, Armstrong GD, Hutkins RW (2006) Prebiotic galactooligosaccharides reduce adherence of enteropathogenic Escherichia coli to tissue culture cells. Infect Immun 74:6920–6928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Peshev D, Van den Ende W (2014) Fructans: prebiotics and immunomodulators. J Funct Foods 8:348–357

    Article  CAS  Google Scholar 

  172. Capitan-Canadas F, Ortega-Gonzalez M, Guadix E, Zarzuelo A, Suarez MD, Medina FS, Martinez-Augustin O (2014) Prebiotic oligosaccharides directly modulate proinflammatory cytokine production in monocytes via activation of TLR4. Mol Nutr Food Res 58:1098–1110

    Article  CAS  PubMed  Google Scholar 

  173. Vanmaele RP, Heerze LD, Armstrong GD (1999) Role of lactosyl glycan sequences in inhibiting enteropathogenic Escherichia coli attachment. Infect Immun 67:3302–3307

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Knutton S, Adu-Bobie J, Bain C, Phillips AD, Dougan G, Frankel G (1997) Down regulation of intimin expression during attaching and effacing enteropathogenic Escherichia coli adhesion. Infect Immun 65:1644–1652

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Drakoularakou A, Tzortzis G, Rastall RA, Gibson GR (2010) A double-blind, placebo-controlled, randomized human study assessing the capacity of a novel galacto-oligosaccharide mixture in reducing travellers’ diarrhoea. Eur J Clin Nutr 64:146–152

    Article  CAS  PubMed  Google Scholar 

  176. Bruzzese E, Volpicelli M, Squeglia V, Bruzzese D, Salvini F, Bisceglia M, Lionetti P, Cinquetti M, Iacono G, Amarri S et al (2009) A formula containing galacto-and fructo-oligosaccharides prevents intestinal and extra-intestinal infections: an observational study. Clin Nutr 28:156–161

    Article  CAS  PubMed  Google Scholar 

  177. Arslanoglu S, Moro GE, Schmitt J, Tandoi L, Rizzardi S, Boehm G (2008) Early dietary intervention with a mixture of prebiotic oligosaccharides reduces the incidence of allergic manifestations and infections during the first two years of life. J Nutr 138:1091–1095

    CAS  PubMed  Google Scholar 

  178. Arslanoglu S, Moro GE, Boehm G (2007) Early supplementation of prebiotic oligosaccharides protects formula-fed infants against infections during the first 6 months of life. J Nutr 137:2420–2424

    CAS  PubMed  Google Scholar 

  179. Waligora-Dupriet A-J, Campeotto F, Nicolis I, Bonet A, Soulaines P, Dupont C, Butel M-J (2007) Effect of oligofructose supplementation on gut microflora and well-being in young children attending a day care centre. Int J Food Microbiol 113:108–113

    Article  CAS  PubMed  Google Scholar 

  180. Cummings JH, Christie S, Cole TJ (2001) A study of fructo oligosaccharides in the prevention of travellers’ diarrhoea. Aliment Pharmacol Ther 15:1139–1145

    Article  CAS  PubMed  Google Scholar 

  181. Saavedra J, Tschernia A, Moore N, Abi-Hanna A, Coletta F, Emenhiser C, Yolken R (1999) Gastro-intestinal function in infants consuming a weaning food supplemented with oligofructose, a prebiotic. J Pediatr Gastroenterol Nutr 29:513

    Article  Google Scholar 

  182. Tschernia A, Moore N, Abi-Hanna A, Yolken R, Coletta F, Emenhiser C, Saavedra J (1999) Effects of long-term consumption of a weaning food supplemented with oligofructose, a prebiotic, on general infant health status. J Pediatr Gastroenterol Nutr 29:503

    Article  Google Scholar 

  183. Pariwat P, Homvisasevongsa S, Muanprasat C, Chatsudthipong V (2008) A natural plant-derived dihydroisosteviol prevents cholera toxin-induced intestinal fluid secretion. J Pharmacol Exp Ther 324:798–805

    Article  CAS  PubMed  Google Scholar 

  184. Palombo EA (2006) Phytochemicals from traditional medicinal plants used in the treatment of diarrhoea: modes of action and effects on intestinal function. Phytother Res 20:717–724

    Article  CAS  PubMed  Google Scholar 

  185. Dubreuil JD (2013) Antibacterial and antidiarrheal activities of plant products against enterotoxinogenic Escherichia coli. Toxins 5(11):2009–2041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Cui H-H, Chen C-L, Wang JD, Yang Y-J, Cun Y, Wu J-B, Liu YH, Dan H-L, Jian Y-T, Chen X-Q (2004) Effects of probiotic on intestinal mucosa of patients with ulcerative colitis. World J Gastroenterol 10:1521–1525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Lin H-C, Su B-H, Chen A-C, Lin T-W, Tsai C-H, Yeh T-F, Oh W (2005) Oral probiotics reduce the incidence and severity of necrotizing enterocolitis in very low birth weight infants. Pediatrics 115:1–4

    Article  PubMed  Google Scholar 

  188. Ruszczy’nski M, Radzikowski A, Szajewska H (2008) Clinical trial: effectiveness of Lactobacillus rhamnosus (strains E/N, Oxy and Pen) in the prevention of antibiotic-associated diarrhoea in children. Aliment Pharmacol Ther 28:154–161

    Article  Google Scholar 

  189. Paton AW, Morona R, Paton JC (2006) Designer probiotics for prevention of enteric infections. Nat Rev Microbiol 4:193–200

    Article  CAS  PubMed  Google Scholar 

  190. Paton AW, Morona R, Paton JC (2010) Bioengineered bugs expressing oligosaccharide receptor mimics: toxin-binding probiotics for treatment and prevention of enteric infections. Bioeng Bugs 1:172–177

    Article  PubMed  Google Scholar 

  191. Paton AW, Morona R, Paton JC (2000) A new biological agent for treatment of Shiga toxigenic Escherichia coli infections and dysentery in humans. Nat Med 6:265–270

    Article  CAS  PubMed  Google Scholar 

  192. Paton AW, Jennings MP, Morona R, Wang H, Focareta A, Roddam LF, Paton JC (2005) Recombinant probiotics for treatment and prevention of enterotoxigenic Escherichia coli diarrhea. Gastroenterology 128:1219–1228

    Article  CAS  PubMed  Google Scholar 

  193. Focareta A, Paton JC, Morona R, Cook J, Paton AW (2006) A recombinant probiotic for treatment and prevention of cholera. Gastroenterology 130:1688–1695

    Article  CAS  PubMed  Google Scholar 

  194. Sheehan VM, Sleator RD, Hill C, Fitzgerald GF (2007) Improving gastric transit, gastrointestinal persistence and therapeutic efficacy of the probiotic strain Bifidobacterium breve UCC2003. Microbiology 153:3563–3571

    Article  CAS  PubMed  Google Scholar 

  195. Sleator RD, Hill C (2007) Patho-biotechnology; using bad bugs to make good bugs better. Sci Prog 90:1–14

    Article  CAS  PubMed  Google Scholar 

  196. Kimman TG, Smit E, Klein MR (2008) Evidence-based biosafety: a review of the principles and effectiveness of microbiological containment measures. Clin Microbiol Rev 21:403–425

    Article  PubMed  PubMed Central  Google Scholar 

  197. Liu HY, Roos S, Jonsson H, Ahl D, Dicksved J, Lindberg JE, Lundh T (2015) Effects of Lactobacillus johnsonii and Lactobacillus reuteri on gut barrier function and heat shock proteins in intestinal porcine epithelial cells. Physiol Rep 3, e12355

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  198. Tuomola EM, Ouwehand AC, Salminen SJ (1999) The effect of probiotic bacteria on the adhesion of pathogens to human intestinal mucus. FEMS Immunol Med Microbiol 26:137–142

    Article  CAS  PubMed  Google Scholar 

  199. Nandakumar NS, Pugazhendhi S, Madhu Mohan K, Jayakanthan K, Ramakrishna BS (2009) Effect of Vibrio cholerae on chemokine gene expression in HT29 cells and its modulation by Lactobacillus GG. Scand J Immunol 69:181–187

    Article  CAS  PubMed  Google Scholar 

  200. Chauviere G, Coconnier M-H, Kern’eis S, Fourniat J, Servin AL (1992) Adhesion of human Lactobacillus acidophilus strain LB to human enterocyte-like Caco-2 cells. Microbiology 138:1689–1696

    CAS  Google Scholar 

  201. Munoz JAM, Chenoll E, Casinos B, Bataller E, Ram’on D, Genov’es S, Montava R, Ribes JM, Buesa J, F’abrega J et al (2011) Novel probiotic Bifidobacterium longum subsp. infantis CECT 7210 strain active against rotavirus infections. Appl Environ Microbiol 77:8775–8783

    Article  CAS  PubMed  Google Scholar 

  202. Zanello G, Meurens F, Berri M, Chevaleyre C, Melo S, Auclair E, Salmon H (2011) Saccharomyces cerevisiae decreases inflammatory responses induced by F4+ enterotoxigenic Escherichia coli in porcine intestinal epithelial cells. Vet Immunol Immunopathol 141:133–138

    Article  CAS  PubMed  Google Scholar 

  203. Lodemann U, Strahlendorf J, Schierack P, Klingspor S, Aschenbach JR, Martens H (2015) Effects of the probiotic Enterococcus faecium and pathogenic Escherichia coli strains in a pig and human epithelial intestinal cell model. Scientifica 2015:235184

  204. Gopal PK, Prasad J, Smart J, Gill HS (2001) In vitro adherence properties of Lactobacillus rhamnosus DR20 and Bifidobacterium lactis DR10 strains and their antagonistic activity against an enterotoxigenic Escherichia coli. Int J Food Microbiol 67:207–216

    Article  CAS  PubMed  Google Scholar 

  205. Varyukhina S, Freitas M, Bardin S, Robillard E, Tavan E, Sapin C, Grill J-P, Trugnan G (2012) Glycan-modifying bacteria-derived soluble factors from Bacteroides thetaiotaomicron and Lactobacillus casei inhibit rotavirus infection in human intestinal cells. Microb Infect 14:273–278

    Article  CAS  Google Scholar 

  206. Roselli M, Finamore A, Britti MS, Mengheri E (2006) Probiotic bacteria Bifidobacterium animalis MB5 and Lactobacillus rhamnosus GG protect intestinal Caco-2 cells from the inflammation-associated response induced by enterotoxigenic Escherichia coli K88. Br J Nutr 95:1177–1184

    Article  CAS  PubMed  Google Scholar 

  207. Michail S, Abernathy F (2002) Lactobacillus plantarum reduces the in vitro secretory response of intestinal epithelial cells to enteropathogenic Escherichia coli infection. J Pediatr Gastroenterol Nutr 35:350–355

    Article  CAS  PubMed  Google Scholar 

  208. Lee DK, Park JE, Kim MJ, Seo JG, Lee JH, Ha NJ (2015) Probiotic bacteria. B. longum and L. acidophilus inhibit infection by rotavirus in vitro and decrease the duration of diarrhea in pediatric patients. Clin Res Hepatol Gastroenterol 39:237–244

    Article  PubMed  Google Scholar 

  209. Fourniat J, Djaballi Z, Maccario J, Bourlioux P, German A (1986) Effect of killed Lactobacillus acidophilus administration on the survival of suckling mice infected with an enterotoxigenic Escherichia coli. Ann Rech Vet 17:401–407

    CAS  PubMed  Google Scholar 

  210. Zhang L, Xu Y-Q, Liu HY, Lai T, Ma J-L, Wang J-F, Zhu Y-H (2010) Evaluation of Lactobacillus rhamnosus GG using an Escherichia coli K88 model of piglet diarrhoea: Effects on diarrhoea incidence, faecal microflora and immune responses. Vet Microbiol 141:142–148

    Article  CAS  PubMed  Google Scholar 

  211. Preidis GA, Saulnier DM, Blutt SE, Mistretta T-A, Riehle KP, Major AM, Venable SF, Barrish JP, Finegold MJ, Petrosino JF et al (2012) Host response to probiotics determined by nutritional status of rotavirus-infected neonatal mice. J Pediatr Gastroenterol Nutr 55:299

    Article  PubMed  PubMed Central  Google Scholar 

  212. Dias RS, Bambirra EA, Silva ME, Nicoli JR (1995) Protective effect of Saccharomyces boulardii against the cholera toxin in rats. Braz J Med Biol Res 28:323–325

    CAS  PubMed  Google Scholar 

  213. Isolauri E, Kaila M, Arvola T, Majamaa H, Rantala I, Virtanen E, Arvilommi H (1993) Diet during rotavirus enteritis affects jejunal permeability to macromolecules in suckling rats. Pediatr Res 33:548–553

    Article  CAS  PubMed  Google Scholar 

  214. Gu’erin-Danan C, Meslin J-C, Chambard A, Charpilienne A, Relano P, Bouley C, Cohen J, Andrieux C (2001) Food supplementation with milk fermented by Lactobacillus casei DN-114 001 protects suckling rats from rotavirus-associated diarrhea. J Nutr 131:111–117

    Google Scholar 

  215. Zhang Z, Xiang Y, Li N, Wang B, Ai H, Wang X, Huang L, Zheng Y (2013) Protective effects of Lactobacillus rhamnosus GG against human rotavirus-induced diarrhoea in a neonatal mouse model. Pathog Dis 67:184–191

    Article  PubMed  CAS  Google Scholar 

  216. Zhou M, Yu H, Yin X, Sabour PM, Chen W, Gong J (2014) Lactobacillus zeae protects Caenorhabditis elegans from enterotoxigenic Escherichia coli-caused death by inhibiting enterotoxin gene expression of the pathogen. PLoS ONE 9, e89004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  217. Ma T, Thiagarajah JR, Yang H, Sonawane ND, Folli C, Galietta LJ, Verkman AS (2002) Thiazolidinone CFTR inhibitor identified by high-throughput screening blocks cholera toxin--induced intestinal fluid secretion. J Clin Invest 110:1651–1658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Thiagarajah JR, Broadbent T, Hsieh E, Verkman AS (2004) Prevention of toxin-induced intestinal ion and fluid secretion by a small-molecule CFTR inhibitor. Gastroenterology 126:511–519

    Article  CAS  PubMed  Google Scholar 

  219. De La Fuente R, Namkung W, Mills A, Verkman AS (2008) Small-molecule screen identifies inhibitors of a human intestinal calcium-activated chloride channel. Mol Pharmacol 73:758–768

    Article  CAS  Google Scholar 

  220. Ko EA, Jin BJ, Namkung W, Ma T, Thiagarajah JR, Verkman AS (2014) Chloride channel inhibition by a red wine extract and a synthetic small molecule prevents rotaviral secretory diarrhoea in neonatal mice. Gut 63:1120–1129

    Article  CAS  PubMed  Google Scholar 

  221. Rufo PA, Merlin D, Riegler M, Ferguson-Maltzman MH, Dickinson BL, Brugnara C, Alper SL, Lencer WI (1997) The antifungal antibiotic, clotrimazole, inhibits chloride secretion by human intestinal T84 cells via blockade of distinct basolateral K+ conductances. Demonstration of efficacy in intact rabbit colon and in an in vivo mouse model of cholera. J Clin Invest 100:3111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Wulff H, Castle NA (2010) Therapeutic potential of KCa3. 1 blockers: recent advances and promising trends. Expert Rev Clin Pharmacol 3:385–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Sonawane ND, Zhao D, Zegarra–Moran O, Galietta LJ, Verkman AS (2007) Lectin conjugates as potent, nonabsorbable CFTR inhibitors for reducing intestinal fluid secretion in cholera. Gastroenterology 132:1234–1244

    Article  CAS  PubMed  Google Scholar 

  224. Snyder DS, Tradtrantip L, Yao C, Kurth MJ, Verkman AS (2011) Potent, metabolically stable benzopyrimido-pyrrolo-oxazine-dione (BPO) CFTR inhibitors for polycystic kidney disease. J Med Chem 54:5468–5477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Tradtrantip L, Sonawane ND, Namkung W, Verkman AS (2009) Nanomolar potency pyrimido-pyrrolo-quinoxalinedione CFTR inhibitor reduces cyst size in a polycystic kidney disease model. J Med Chem 52:6447–6455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Geibel J, Sritharan K, Geibel R, Geibel P, Persing JS, Seeger A, Roepke TK, Deichstetter M, Prinz C, Cheng SX et al (2006) Calcium-sensing receptor abrogates secretagogue-induced increases in intestinal net fluid secretion by enhancing cyclic nucleotide destruction. Proc Natl Acad Sci USA 103:9390–9397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Jouret F, Wu J, Hull M, Rajendran V, Mayr B, Schofl C, Geibel J, Caplan MJ (2013) Activation of the Ca2+−sensing receptor induces deposition of tight junction components to the epithelial cell plasma membrane. J Cell Sci 126:5132–5142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Schulzke JD, Andres S, Amasheh M, Fromm A, Gunzel D (2011) Anti-diarrheal mechanism of the traditional remedy Uzara via reduction of active chloride secretion. PLoS ONE 6, e18107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Saito T, Miyake M, Toba M, Okamatsu H, Shimizu S, Noda M (2002) Inhibition by apple polyphenols of ADP-ribosyltransferase activity of cholera toxin and toxin-induced fluid accumulation in mice. Microbiol Immunol 46:249–255

    Article  CAS  PubMed  Google Scholar 

  230. Schuier M, Sies H, Illek B, Fischer H (2005) Cocoa-related flavonoids inhibit CFTR-mediated chloride transport across T84 human colon epithelia. J Nutr 135:2320–2325

    CAS  PubMed  Google Scholar 

  231. Oi H, Matsuura D, Miyake M, Ueno M, Takai I, Yamamoto T, Kubo M, Moss J, Noda M (2002) Identification in traditional herbal medications and confirmation by synthesis of factors that inhibit cholera toxin-induced fluid accumulation. Proc Natl Acad Sci USA 99:3042–3046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Becker PM, van der Meulen J, Jansman A, van Wikselaar PG (2012) In vitro inhibition of ETEC K88 adhesion by pea hulls and of LT enterotoxin binding by faba bean hulls. J Anim Physiol Anim Nutr 96:1121–1126

    Article  CAS  Google Scholar 

  233. Namkung W, Thiagarajah JR, Phuan P-W, Verkman AS (2010) Inhibition of Ca2+−activated Cl-channels by gallotannins as a possible molecular basis for health benefits of red wine and green tea. FASEB J24:4178–4186

    Article  CAS  Google Scholar 

  234. Morinaga N, Iwamaru Y, Yahiro K, Tagashira M, Moss J, Noda M (2005) Differential activities of plant polyphenols on the binding and internalization of cholera toxin in vero cells. J Biol Chem 280:23303–23309

    Article  CAS  PubMed  Google Scholar 

  235. Ataka K, Kuge T, Venkova K, Greenwood-Van Meerveld B (2003) Seirogan (wood creosote) inhibits stress-induced ion secretion in rat intestinal epithelium. Dig Dis Sci 48:1303–1309

    Article  CAS  PubMed  Google Scholar 

  236. Vel’azquez C, Correa-Basurto J, Garcia-Hernandez N, Barbosa E, Tesoro-Cruz E, Calzada S, Calzada F (2012) Anti-diarrheal activity of (−−)-Epicatechin from Chiranthodendron pentadactylon Larreat: Experimental and computational studies. J Ethnopharmacol 143:716–719

    Article  CAS  Google Scholar 

  237. Chen J-C, Chang Y-S, Wu SL, Chao D-C, Chang C-S, Li C-C, Ho T-Y, Hsiang C-Y (2007) Inhibition of Escherichia coli heat-labile enterotoxin-induced diarrhea by Chaenomeles speciosa. J Ethnopharmacol 113:233–239

    Article  PubMed  Google Scholar 

  238. Iwami M, Shiina T, Hirayama H, Shima T, Takewaki T, Shimizu Y (2011) Inhibitory effects of zingerone, a pungent component of Zingiber officinale Roscoe, on colonic motility in rats. J Nat Med 65:89–94

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the Director of NDRI for supporting the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Mandal.

Ethics declarations

Funding

There was no funding available.

Conflict of interest

The author declared that they have no conflict of interest.

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anand, S., Mandal, S., Patil, P. et al. Pathogen-induced secretory diarrhea and its prevention. Eur J Clin Microbiol Infect Dis 35, 1721–1739 (2016). https://doi.org/10.1007/s10096-016-2726-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-016-2726-5

Keywords

Navigation