Skip to main content

Advertisement

Log in

Evaluation of inner retinal layers with optic coherence tomography in vigabatrin-exposed patients

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

In order to reveal the underlying retinal pathology leading to dysfunction in vigabatrin-exposed patients, we aimed to evaluate the inner retinal layers encompassing ganglion cell complex (GCC) layer and inner plexiform layer with new generation optic coherence tomography (OCT). Fourteen patients with epilepsy and exposure to vigabatrin and 12 clinically normal individuals, constituting the control group, were included. Retinal images were obtained using spectral-domain OCT (Optovue RTVue Fourier domain). Nasal and superior quadrants of retinal nerve fiber layer (RNFL) were found to be significantly lower in the patient group compared to the controls (p < 0.01). No significant difference was shown in the thickness of GCC layer (p > 0.05). Foveal thickness was significantly higher in the patient group (p: 0.006), but no significant difference was found in perifoveal and parafoveal regions between groups (p > 0.05). The thickness of RNFL was found to be lower in vigabatrin-exposed patients without any reduction in GCC layer in the macular region. However, foveal thickness was found to be significantly higher compared to perifoveal and parafoveal macular regions in vigabatrin-exposed patients. In conclusion, OCT revealed reduced thickness of RNFL without any reduction in ganglion cell layer in our study. The objective quantitative assessment of OCT is a practical noninvasive method and it can have role in future monitoring of these patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Cross-Disorder Phenotype Group of the Psychiatric GWAS Consortium, Craddock N, Kendler K, Neale M, Nurnberger J, Purcell S, Rietschel M, Perlis R, Santangelo SL, Schulze TG, Smoller JW, Thapar A (2009) Dissecting the phenotype in genome-wide association studies of psychiatric illness. Br J Psychiatry 195(2):97–99

    Article  PubMed Central  Google Scholar 

  2. Hardus P, Verduin WM, Berendschot TT, Kamermans M, Postma G, Stilma JS et al (2001) The value of electrophysiology results in patients with epilepsy and vigabatrin associated visual field loss. Acta Ophthalmol Scand 79(2):169–174

    Article  CAS  PubMed  Google Scholar 

  3. Sills GJ, Butler E, Forrest G, Ratnaraj N, Patsalos PN, Brodie MJ (2003) Vigabatrin, but not gabapentin or topiramate, produces concentration-related effects on enzymes and intermediates of the GABA shunt in rat brain and retina. Epilepsia 44(7):886–892

    Article  CAS  PubMed  Google Scholar 

  4. Ravindran J, Blumbergs P, Crompton J, Pietris G, Waddy H (2001) Visual field loss associated with vigabatrin: pathological correlations. J Neurol Neurosurg Psychiatry 70:787–789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hawker MJ, Astbury NJ (2008) The ocular side effects of vigabatrin (Sabril): information and guidance for screening. Eye (Lond) 22(9):1097–1098

    Article  CAS  Google Scholar 

  6. Harding GF, Wild JM, Robertson KA, Lawden MC, Betts TA, Barber C et al (2000) Electro-oculography, electroretinography, visual evoked potentials, and multifocal electroretinography in patients with vigabatrin-attributed visual field constriction. Epilepsia 41(11):1420–1431

    Article  CAS  PubMed  Google Scholar 

  7. Durnian JM, Clearkin LG (2008) Retinal nerve fibre layer characteristics with vigabatrin-associated visual field loss—could scanning laser polarimetry aid diagnosis? Eye (Lond) 22(4):559–563

    Article  CAS  Google Scholar 

  8. Eke T, Talbot JF, Lawden MC (1997) Severe persistent visual field constriction associated with vigabatrin. BMJ 314:180–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Vizzeri G, Weinreb RN, Gonzalez-Garcia AO, Bowd C, Medeiros FA, Sample PA et al (2009) Agreement between spectral-domain and time-domain OCT for measuring RNFL thickness. Br J Ophthalmol 93(6):775–781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Clayton LM, Dévilé M, Punte T, Kallis C, de Haan GJ, Sander JW et al (2011) Retinal nerve fiber layer thickness in vigabatrin-exposed patients. Ann Neurol 69(5):845–854

    Article  CAS  PubMed  Google Scholar 

  11. Wild JM, Robson CR, Jones AL, Cunliffe IA, Smith PE (2006) Detecting vigabatrin toxicity by imaging of the retinal nerve fiber layer. Invest Ophthalmol Vis Sci 47(3):917–924

    Article  PubMed  Google Scholar 

  12. Buncic JR, Westall CA, Panton CM, Munn JR, MacKeen LD, Logan WJ (2004) Characteristic retinal atrophy with secondary “inverse” optic atrophy identifies vigabatrin toxicity in children. Ophthalmology 111(10):1935–1942

    Article  PubMed  Google Scholar 

  13. Lawthom C, Smith PE, Wild JM (2009) Nasal retinal nerve fiber layer attenuation: a biomarker for vigabatrin toxicity. Ophthalmology 116:565–571

    Article  PubMed  Google Scholar 

  14. Jammoul F, Dégardin J, Pain D, Gondouin P, Simonutti M, Dubus E et al (2010) Taurine deficiency damages photoreceptors and retinal ganglion cells in vigabatrin-treated neonatal rats. Mol Cell Neurosci 43(4):414–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang QP, Jammoul F, Duboc A, Gong J, Simonutti M, Dubus E et al (2008) Treatment of epilepsy: the GABA-transaminase inhibitor, vigabatrin, induces neuronal plasticity in the mouse retina. Eur J Neurosci 27(8):2177–2187

    Article  PubMed  PubMed Central  Google Scholar 

  16. Izumi Y, Ishikawa M, Benz AM, Izumi M, Zorumski CF, Thio LL (2004) Acute vigabatrin retinotoxicity in albino rats depends on light but not GABA. Epilepsia 45(9):1043–1048

    Article  CAS  PubMed  Google Scholar 

  17. Krauss GL, Johnson MA, Miller NR (1998) Vigabatrin-associated retinal cone system dysfunction: electroretinogram and ophthalmologic findings. Neurology 50:614–618

    Article  CAS  PubMed  Google Scholar 

  18. Wilson EA, Brodie MJ (1997) Severe persistent visual field constriction associated with vigabatrin [letter]. BMJ 314:1693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Duboc A, Hanoteau N, Simonutti M, Rudolf G, Nehlig A, Sahel JA et al (2004) Vigabatrin, the GABA-transaminase inhibitor, damages cone photoreceptors in rats. Ann Neurol 55(5):695–705

    Article  CAS  PubMed  Google Scholar 

  20. Hébert-Lalonde N, Carmant L, Major P, Roy MS, Lassonde M, Saint-Amour D (2016) Electrophysiological evidences of visual field alterations in children exposed to vigabatrin early in life. Pediatr Neurol 59:47–53

    Article  PubMed  Google Scholar 

  21. Coupland SG, Zackon DH, Leonard BC, Ross TM (2001) Vigabatrin effect on inner retinal function. Ophthalmology 108(8):1493–1496

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Betül Tekin Güveli.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tuğcu, B., Bitnel, M.K., Kaya, F.S. et al. Evaluation of inner retinal layers with optic coherence tomography in vigabatrin-exposed patients. Neurol Sci 38, 1423–1427 (2017). https://doi.org/10.1007/s10072-017-2971-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-017-2971-0

Keywords

Navigation