Skip to main content

Advertisement

Log in

Neural substrate of depression during migraine

  • Invited Lecture
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Migraine headache is triggered by and associated with a variety of hormonal, emotional, nutritional and physiological changes. The perception of migraine headache is formed when nociceptive signals originating in the meninges are conveyed to the somatosensory cortex through the trigeminal ganglion, medullary dorsal horn and thalamus. We propose that different migraine triggers activate a wide variety of brain areas that impinge on parasympathetic neurons innervating the meninges. According to this hypothesis, migraine triggers such as stress activate multiple hypothalamic, limbic and cortical areas, all of which contain neurons that project to the preganglionic parasympathetic neurons in the superior salivatory nucleus (SSN). The SSN, in turn, activates postganglionic parasympathetic neurons in the sphenopalatine ganglion, resulting in vasodilation and local release of inflammatory molecules that activate meningeal nociceptors. We propose that trigeminovascular projections from the medullary dorsal horn to selective areas in the midbrain, hypothalamus, amygdala and basal forebrain are functionally positioned to produce migraine symptoms such as irritability, loss of appetite, fatigue, depression and the quest for solitude. The network of bidirectional trafficking by which the trigeminovascular system can activate the same brain areas that have triggered its own activity in the first place provides an attractive mechanism of perpetual feedback that drives a migraine attack for many hours and even days.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Penfield W, McNaughton F (1940) Dural headache and innervation of the dura mater. Arch Neurol Psychiat 44:43–75

    Google Scholar 

  2. Ray BS, Wolff HG (1940) Experimental studies on headache. Pain-sensitive structures of the head and their significance in headache. Arch Surg 41:813–856

    Google Scholar 

  3. Porreca F, Ossipov MH, Gebhart GF (2002) Chronic pain and medullary descending facilitation. Trends Neurosci 25(6):319–325

    Article  PubMed  CAS  Google Scholar 

  4. Zagami AS, Rasmussen BK (2000) Symptomology of migraine without aura. In: Olesen J, Tfelt-hansen P, Welch MA (eds) The headaches. Raven Press, New York, pp 337–343

    Google Scholar 

  5. Liveing E (1873) On megrim, sick headache. Arts & Boeve Publishers, Nijmegen

    Google Scholar 

  6. Gursoy-Ozdemir Y et al (2004) Cortical spreading depression activates and upregulates MMP-9. J Clin Invest 113(10):1447–1455

    PubMed  CAS  Google Scholar 

  7. Moskowitz MA, Macfarlane R (1993) Neurovascular and molecular mechanisms in migraine headaches. Cerebrovasc Brain Metab Rev 5(3):159–177

    PubMed  CAS  Google Scholar 

  8. Moskowitz MA, Cutrer FM (1993) SUMATRIPTAN: a receptor-targeted treatment for migraine [Review] [44 refs]. Annu Rev Med 44:145–154

    Article  PubMed  CAS  Google Scholar 

  9. Ebersberger A et al (1999) Release of substance P, calcitonin gene-related peptide and prostaglandin E2 from rat dura mater encephali following electrical and chemical stimulation in vitro. Neuroscience 89(3):901–907

    Article  PubMed  CAS  Google Scholar 

  10. Goadsby PJ, Edvinsson L (1993) The trigeminovascular system and migraine: studies characterizing cerebrovascular and neuropeptide changes seen in humans and cats. Ann Neurol 33(1):48–56

    Article  PubMed  CAS  Google Scholar 

  11. Suzuki N, Hardebo JE (1993) The cerebrovascular parasympathetic innervation. Cerebrovasc Brain Metab Rev 5(1):33–46

    PubMed  CAS  Google Scholar 

  12. Larsson LI et al (1976) Immunohistochemical localization of a vasodilatory polypeptide (VIP) in cerebrovascular nerves. Brain Res 113(2):400–404

    Article  PubMed  CAS  Google Scholar 

  13. Nozaki K et al (1993) Possible origins and distribution of immunoreactive nitric oxide synthase-containing nerve fibers in cerebral arteries. J Cereb Blood Flow Metab 13(1):70–79

    PubMed  CAS  Google Scholar 

  14. Knight YE et al (2005) Patterns of fos expression in the rostral medulla and caudal pons evoked by noxious craniovascular stimulation and periaqueductal gray stimulation in the cat. Brain Res 1045(1–2):1–11

    PubMed  CAS  Google Scholar 

  15. Bolay H et al (2002) Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model. Nat Med 8(2):136–142

    Article  PubMed  CAS  Google Scholar 

  16. Yarnitsky D et al (2003) 2003 Wolff Award: possible parasympathetic contributions to peripheral and central sensitization during migraine. Headache 43(7):704–714

    Article  PubMed  Google Scholar 

  17. Sluder G (1908) The role of the sphenopalatine ganglion in nasal headaches. N Y State J Med 27:8–13

    Google Scholar 

  18. Waldman SD (1990) The role of neural blockade in the management of common pain syndromes. In: Weiner RS (ed) Innovations in pain management. Deutch press, Orlando, pp 4–14

    Google Scholar 

  19. Waldman SD (1993) Sphenopalatine ganglion block—80 years later. Reg Anesth 18(5):274–276

    PubMed  CAS  Google Scholar 

  20. Diamond S, Dalessio DJ (1982) The practicing physicians approach to headaches, 3rd edn. Williams & Wilkins, Baltimore

    Google Scholar 

  21. Dalessio DJ (1980) The major neuralgias, postinfections neuritis, intractable pain, and atypical facial pain. In: Delessio DJ (ed) Wolff’s headache. Oxford Press, New York, pp 247–248

    Google Scholar 

  22. Kudrow L (1980) Cluster headache: mechanism and management. Oxford Press, London, pp 114–116

    Google Scholar 

  23. Kudrow L, Kudrow DB, Sandweiss JH (1995) Rapid and sustained relief of migraine attacks with intranasal lidocaine: preliminary findings. Headache 35(2):79–82

    Article  PubMed  CAS  Google Scholar 

  24. Reutens DC et al (1991) Is intravenous lidocaine clinically effective in acute migraine? Cephalalgia 11(6):245–247

    Article  PubMed  CAS  Google Scholar 

  25. Maizels M et al (1996) Intranasal lidocaine for treatment of migraine: a randomized, double- blind, controlled trial [see comments]. JAMA 276(4):319–321

    Article  PubMed  CAS  Google Scholar 

  26. Spencer SE et al (1990) CNS projections to the pterygopalatine parasympathetic preganglionic neurons in the rat: a retrograde transneuronal viral cell body labeling study. Brain Res 534(1–2):149–169

    PubMed  CAS  Google Scholar 

  27. Forray MI, Gysling K (2004) Role of noradrenergic projections to the bed nucleus of the stria terminalis in the regulation of the hypothalamic-pituitary-adrenal axis. Brain Res Brain Res Rev 47(1–3):145–160

    Article  PubMed  CAS  Google Scholar 

  28. Walker DL, Toufexis DJ, Davis M (2003) Role of the bed nucleus of the stria terminalis versus the amygdala in fear, stress, and anxiety. Eur J Pharmacol 463(1–3):199–216

    Article  PubMed  CAS  Google Scholar 

  29. Swanson LW, Sawchenko PE (1980) Paraventricular nucleus: a site for the integration of neuroendocrine and autonomic mechanisms. Neuroendocrinology 31(6):410–417

    Article  PubMed  CAS  Google Scholar 

  30. Coote JH (2005) A role for the paraventricular nucleus of the hypothalamus in the autonomic control of heart and kidney. Exp Physiol 90(2):169–173

    Article  PubMed  CAS  Google Scholar 

  31. Olesen J (1998) Regional cerebral blood flow and oxygen metabolism during migraine with and without aura. Cephalalgia 18(1):2–4

    Article  PubMed  CAS  Google Scholar 

  32. Keay KA, Bandler R (2001) Parallel circuits mediating distinct emotional coping reactions to different types of stress. Neurosci Biobehav Rev 25(7–8):669–678

    Article  PubMed  CAS  Google Scholar 

  33. Bandler R et al (2000) Central circuits mediating patterned autonomic activity during active vs. passive emotional coping. Brain Res Bull 53(1):95–104

    Article  PubMed  CAS  Google Scholar 

  34. Bernardis LL, Bellinger LL (1993) The lateral hypothalamic area revisited: neuroanatomy, body weight regulation, neuroendocrinology and metabolism. Neurosci Biobehav Rev 17(2):141–193

    Article  PubMed  CAS  Google Scholar 

  35. Bernardis LL, Bellinger LL (1998) The dorsomedial hypothalamic nucleus revisited: 1998 update. Proc Soc Exp Biol Med 218(4):284–306

    PubMed  CAS  Google Scholar 

  36. Lin JS et al (1989) A critical role of the posterior hypothalamus in the mechanisms of wakefulness determined by microinjection of muscimol in freely moving cats. Brain Res 479(2):225–240

    Article  PubMed  CAS  Google Scholar 

  37. Peyron C et al (1998) Neurons containing hypocretin (orexin) project to multiple neuronal systems. J Neurosci 18(23):9996–10015

    PubMed  CAS  Google Scholar 

  38. Panksepp J (1971) Aggression elicited by electrical stimulation of the hypothalamus in albino rats. Physiol Behav 6(4):321–329

    Article  PubMed  CAS  Google Scholar 

  39. Kruk MR et al (1983) Discriminant analysis of the localization of aggression-inducing electrode placements in the hypothalamus of male rats. Brain Res 260(1):61–79

    Article  PubMed  CAS  Google Scholar 

  40. Norgren R (1970) Gustatory responses in the hypothalamus. Brain Res 21(1):63–77

    Article  PubMed  CAS  Google Scholar 

  41. Roeling TA et al (1993) Behavioural responses of bicucculline methiodide injections into the ventral hypothalamus of freely moving, socially interacting rats. Brain Res 615(1):121–127

    Article  PubMed  CAS  Google Scholar 

  42. Saper CB (1995) Central autonomic system. In: Paxinos G (ed) The rat nervous system. Academic Press, San Diego, pp 107–136

    Google Scholar 

  43. Sherin JE et al (1996) Activation of ventrolateral preoptic neurons during sleep. Science 271(5246):216–219

    Article  PubMed  CAS  Google Scholar 

  44. Simerly RB (1995) Anatomical substrates of hypothalamic integration. In: Paxinos G (ed) The rat nervous system. Academic Press, San Diego, pp 353–376 of 1136

    Google Scholar 

  45. Swanson LW (1987) The hypothalamus. In: Bjorklund A, Hokfelt T, Swanson LW (eds) Integrated systems of the CNS, part I. Elsevier, Amsterdam, pp 1–124

    Google Scholar 

  46. Scammell TE, Price KJ, Sagar SM (1993) Hyperthermia induces c-fos expression in the preoptic area. Brain Res 618(2):303–307

    Article  PubMed  CAS  Google Scholar 

  47. Burstein R, Giesler GJ Jr (1989) Retrograde labeling of neurons in the spinal cord that project directly to nucleus accumbens or the septal nuclei in the rat. Brain Res 497:149–154

    Article  PubMed  CAS  Google Scholar 

  48. Burstein R, Cliffer KD, Giesler GJ Jr (1990) Cells of origin of the spinohypothalamic tract in the rat. J Comp Neurol 291(3):329–344

    Article  PubMed  CAS  Google Scholar 

  49. Burstein R, Potrebic S (1993) Retrograde labeling of neurons in the spinal cord that project directly to the amygdala or the orbital cortex in the rat. J Comp Neurol 335(4):469–485

    Article  PubMed  CAS  Google Scholar 

  50. Malick A, Burstein R (1998) Cells of origin of the trigeminohypothalamic tract in the rat. J Comp Neurol 400:125–144

    Article  PubMed  CAS  Google Scholar 

  51. Malick A, Strassman RM, Burstein R (2000) Trigeminohypothalamic and reticulohypothalamic tract neurons in the upper cervical spinal cord and caudal medulla of the rat. J Neurophysiol 84(4):2078–2112

    PubMed  CAS  Google Scholar 

  52. Bernard JF et al (1995) Organization of the efferent projections from the spinal cervical enlargement to the parabrachial area and periaqueductal gray: a PHA-L study in the rat. J Comp Neurol 353(4):480–505

    Article  PubMed  CAS  Google Scholar 

  53. Bester H et al (1995) Spino (trigemino) parabrachiohypothalamic pathway: electrophysiological evidence for an involvement in pain processes. J Neurophysiol 73(2):568–585

    PubMed  CAS  Google Scholar 

  54. Keay KA, Bandler R (1992) Anatomical evidence for segregated input from the upper cervical spinal cord to functionally distinct regions of the periaqueductal gray region of the cat. Neurosci Lett 139(2):143–148

    Article  PubMed  CAS  Google Scholar 

  55. Vanderhorst VG et al (1996) Distinct cell groups in the lumbosacral cord of the cat project to different areas in the periaqueductal gray. J Comp Neurol 376(3):361–385

    Article  PubMed  CAS  Google Scholar 

  56. Strassman AM, Mineta Y, Vos BP (1994) Distribution of fos-like immunoreactivity in the medullary and upper cervical dorsal horn produced by stimulation of dural blood vessels in the rat. J Neurosci 14(6):3725–3735

    PubMed  CAS  Google Scholar 

  57. Chemelli RM et al (1999) Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell 98(4):437–451

    Article  PubMed  CAS  Google Scholar 

  58. van den Pol AN (1999) Hypothalamic hypocretin (Orexin): robust innervation of the spinal cord. J Neurosci 19(8):3171–3182

    PubMed  Google Scholar 

  59. Bittencourt JC et al (1992) The melanin-concentrating hormone system of the rat brain: an immuno- and hybridization histochemical characterization. J Comp Neurol 319(2):218–245

    Article  PubMed  CAS  Google Scholar 

  60. Bittencourt JC, Elias CF (1993) Diencephalic origins of melanin-concentrating hormone immunoreactive projections to medial septum/diagonal band complex and spinal cord using two retrograde fluorescent tracers. Ann N Y Acad Sci 680:462–465

    Article  PubMed  CAS  Google Scholar 

  61. Sakurai T et al (1998) Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 92(4):573–585

    Article  PubMed  CAS  Google Scholar 

  62. Elmquist JK, Elias CF, Saper CB (1999) From lesions to leptin: hypothalamic control of food intake and body weight. Neuron 22(2):221–232

    Article  PubMed  CAS  Google Scholar 

  63. Armstrong WE (1995) Hypothalamic supraoptic and paraventricular nuclei. In: Paxinos G (ed) The rat nervous system. Academic Press, San Diego, pp 377–390

    Google Scholar 

  64. Heimer L et al (1997) Substantia innominata: a notion which impedes clinical-anatomical correlations in neuropsychiatric disorders. Neuroscience 76(4):957–1006

    Article  PubMed  CAS  Google Scholar 

  65. Keay KA et al (1994) Convergence of deep somatic and visceral nociceptive information onto a discrete ventrolateral midbrain periaqueductal gray region. Neuroscience 61(4):727–732

    Article  PubMed  CAS  Google Scholar 

  66. Clement CI et al (2000) Spinal sources of noxious visceral and noxious deep somatic afferent drive onto the ventrolateral periaqueductal gray of the rat. J Comp Neurol 425(3):323–344

    Article  PubMed  CAS  Google Scholar 

  67. Depaulis A, Keay KA, Bandler R (1994) Quiescence and hyporeactivity evoked by activation of cell bodies in the ventrolateral midbrain periaqueductal gray of the rat. Exp Brain Res 99(1):75–83

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grants NS051484, NS35611.

Conflict of interest statement

The authors declare that they have no conflict of interest related to the publication of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rami Burstein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burstein, R., Jakubowski, M. Neural substrate of depression during migraine. Neurol Sci 30 (Suppl 1), 27–31 (2009). https://doi.org/10.1007/s10072-009-0061-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-009-0061-7

Keywords

Navigation