Skip to main content
Log in

Roles of chondroitin sulfate in oil-in-water emulsions formulated using bovine serum albumin

  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Chondroitin sulfate (CS) effects on phase stability and actions in bovine serum albumin (BSA)-stabilized emulsions at different pH values were studied. Emulsion activity and stability were evaluated at CS concentrations ranging from 0 to 0.1% (w/w). BSA-CS emulsions showed unique behaviors under different pH values. CS destabilized emulsion phases drastically at pH 3.0 and gradually at pH 7.0. However, at pH 5.0, CS exerted concentration-dependent effects on emulsion stability and caused a decrease in particle size. CS is negatively charged with concentrationdependency at all pH values. However, different roles were observed when the surface charge of BSA was changed. CS formed interfacial layers via charge interactions with BSA to form complexes that sufficiently saturated the surface of oil droplets and prevented phase-separation via steric hindrance and repulsive forces, especially near the protein isoelectric point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Guzey D, McClements DJ. Formation, stability and properties of multilayer emulsions for application in the food industry. Adv. Colloid Interfac. 128–130: 227–248 (2006)

    Article  Google Scholar 

  2. Kim HJ, Choi SJ, Shin W-S, Moon TW. Emulsifying properties of bovine serum albumin-galactomannan conjugates. J. Agr. Food Chem. 51: 1049–1056 (2003)

    Article  CAS  Google Scholar 

  3. Ma B, Tie Z, Zou D, Li J, Wang W. Urea- and thermal-induced unfolding of bovine serum albumin. Mod. Phys. Lett. B 20: 1909–1916 (2006)

    Article  CAS  Google Scholar 

  4. Lenormand H, Deschrevel B, Tranchepain F, Vincent J-C. Electrostatic interactions between hyaluronan and proteins at pH 4: How do they modulate hyaluronidase activity. Biopolymers 89: 1088–1103 (2008)

    Article  CAS  Google Scholar 

  5. Yang JS, Jiang B, He W, Xia YM. Hydrophobically modified alginate for emulsion of oil in water. Carbohyd. Polym. 87: 1503–1506 (2012)

    Article  CAS  Google Scholar 

  6. Makri EA, Doxastakis GI. Study of emulsions stabilized with Phaseolus vulgaris or Phaseolus coccineus with the addition of arabic gum, locust bean gum and xanthan gum. Food Hydrocolloid. 20: 1141–1152 (2006)

    Article  CAS  Google Scholar 

  7. Sun C, Gunasekaran S, Richards MP. Effect of xanthan gum on physicochemical properties of whey protein isolate stabilized oil-in-water emulsions. Food Hydrocolloid. 21: 555–564 (2007)

    Article  CAS  Google Scholar 

  8. Neiser S, Draget KI, Smidsrød O. Gel formation in heat-treated bovine serum albumin-α-carrageenan systems. Food Hydrocolloid. 14: 95–110 (2000)

    Article  CAS  Google Scholar 

  9. Neirynck N, Van der Meeren P, Lukaszewicz-Lausecker M, Cocquyt J, Verbeken D, Dewettinck K. Influence of pH and biopolymer ratio on whey protein–pectin interactions in aqueous solutions and in O/W emulsions. Colloid. Surface A 298: 99–107 (2007)

    Article  CAS  Google Scholar 

  10. Chanasattru W, Jones OG, Decker EA, McClements DJ. Impact of cosolvents on formation and properties of biopolymer nanoparticles formed by heat treatment of β-lactoglobulin-pectin complexes. Food Hydrocolloid. 23: 2450–2457 (2009)

    Article  CAS  Google Scholar 

  11. Kato A, Sato T, Kobayashi K. Emulsifying properties of protein-polysaccharide complexes and hybrids. Agr. Biol. Chem. Tokyo 53: 2147–2152 (1989)

    Article  CAS  Google Scholar 

  12. Larichev NA, Gurov AN, Tolstoguzov VB. Protein-polysaccharide complexes at the interphase. 1. Characteristics of decane/water emulsions stabilized by complexes of bovine serum albumin with dextran sulphate. Colloid. Surface. 6: 27–34 (1983)

    Article  CAS  Google Scholar 

  13. Nakamura A, Fujii N, Tobe J, Adachi N, Hirotsuka M. Characterization and functional properties of soy bean high-molecular-mass polysaccharide complex. Food Hydrocolloid. 29: 75–84 (2012)

    Article  CAS  Google Scholar 

  14. Nakamura A, Furuta H, Kato M, Maeda H, Nagamatsu Y. Effect of soybean soluble polysaccharides on the stability of milk protein under acidic conditions. Food Hydrocolloid. 17: 333–343 (2003)

    Article  CAS  Google Scholar 

  15. Kim DY, Shin WS. Roles of fucoidan, an anionic sulfated polysaccharide on BSA-stabilized oil-in-water emulsion. Macromol. Res. 17: 128–132 (2009)

    Article  CAS  Google Scholar 

  16. Kim DY, Shin WS, Hong WS. The unique behaviors of biopolymers, BSA and fucoidan, in a model emulsion system under different pH circumstances. Macromol. Res. 18: 1103–1108 (2010)

    Article  CAS  Google Scholar 

  17. Malavaki CJ, Asimakopoulou AP, Lamari FN, Theocharis AD, Tzanakakis GN, Karamanos NK. Capillary electrophoresis for the quality control of chondroitin sulfates in raw materials and formulations. Anal. Biochem. 374: 213–220 (2008)

    Article  CAS  Google Scholar 

  18. Wang P, Tang J. Solvent-free mechanochemical extraction of chondroitin sulfate from shark cartilage. Chem. Eng. Process. 48: 1187–1191 (2009)

    Article  CAS  Google Scholar 

  19. Maeda S. Quantitative of chondroitin sulfate isomers in intervertebral disk chondrocyte culture using capillary electrophoresis. J. Vet. Med. Sci. 63: 1039–1043 (2001)

    Article  CAS  Google Scholar 

  20. Sugahara K, Oh Y, Harada T. Structural studies on sulfated oligosaccharides derived from the carbohydrate-protein linkage region of chondroitin 6-sulfate proteoglycans of shark cartilage. J. Biol. Chem. 267: 6027–6035 (1992)

    CAS  Google Scholar 

  21. Hardingham T, Bayliss M. Proteoglycans of articular cartilage: Changes in aging and in joint disease. Semin. Arthritis Rheu. 20: 12–33 (1990)

    Article  CAS  Google Scholar 

  22. Volpi N. Analytical aspects of pharmaceutical grade chondroitin sulfates. J. Pharm. Sci. 96: 3168–3180 (2007)

    Article  CAS  Google Scholar 

  23. Volpi N, Maccari F. Electrophoretic approaches to the analysis of complex polysaccharides. J. Chromatogr. B 834: 1–13 (2006)

    Article  CAS  Google Scholar 

  24. Zhang JS, Imai T, Suenaga A, Otagiri M. Molecular-weight-dependent pharmacokinetics and cytotoxic properties of cisplatin complexes prepared with chondroitin sulfate A and C. Int. J. Pharm. 240: 23–31 (2000)

    Article  Google Scholar 

  25. Campo GM, Avenoso A, Campo, S, Frlazzo AM, Altavilla D, Calatroni A. Efficacy of treatment with glycosaminoglycans on experimental collagen-induced arthritis in rats. Arthritis Res. Ther. 5: 122–131 (2003)

    Article  Google Scholar 

  26. Cho SY, Shim JS, Heong CS, Chang SY, Choi DW, Toida T, Kim YS. Effects of low molecular weight chondroitin sulfate on Type II collagen-induced arthritis in DBA/1J mice. Biol. Pharm. Bull. 27: 47–51 (2004)

    Article  CAS  Google Scholar 

  27. Omata T, Itokazu Y, Inoue N, Segawa Y. Effects of chondroitin sulfate-C on articular cartilage destruction in murine collagen-induced arthritis. Arzneim. Forsch. 50: 148–153 (2000)

    CAS  Google Scholar 

  28. Uebelhart D, Thonar EJ, Delmas PD, Chantraine A, Vignon E. Effects of oral chondroitin sulfate on the progression of knee osteoarthritis: A pilot study. Osteoarthr. Cartilage 6: 39–46 (1998)

    Article  Google Scholar 

  29. Volpi N. Oral bioavailability of chondroitin sulfate (Condrosulf®) and its constituents in healthy male volunteers. Osteoarthr. Cartilage 10: 768–777 (2002)

    Article  CAS  Google Scholar 

  30. Guiherme MR, Reis AV, Alves BR, Kunita MH, Rubira AF, Fambourqi EB. Smart hollow microspheres of chondroitin sulfate conjugates and magnetite nanoparticles for magnetic vector. J. Colloid Interf. Sci. 352: 107–113 (2010)

    Article  Google Scholar 

  31. Jo JH, Park DC JL, Do JR, Kim YM, Kim DS, Park YK, Lee TK, Cho SM. Optimization of skate (Raja flavirostris) cartilage hydrolysis for the preparation of chondroitin sulfate. Food Sci. Biotechnol. 13: 622–626 (2004)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weon-Sun Shin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, KY., Kim, DY. & Shin, WS. Roles of chondroitin sulfate in oil-in-water emulsions formulated using bovine serum albumin. Food Sci Biotechnol 24, 1583–1589 (2015). https://doi.org/10.1007/s10068-015-0204-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-015-0204-y

Keywords

Navigation