Skip to main content
Log in

An effective method for deproteinization of bioactive polysaccharides extracted from lingzhi (Ganoderma atrum)

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Deproteinization procedure is a fundamental step for analyzing polysaccharide from natural plants. In this study, in the course of refining bioactive polysaccharides from lingzhi (Ganoderma atrum), an effective deproteinization method using lead acetate solution was established by comparing with other available methods. The percentages of deproteinization, polysaccharide loss, and its antioxidant activities loss were used as the index to evaluate and optimize the precipitation experimental conditions. The results showed that the modified method, precipitation with the addition of 0.4–0.52%(w/v) lead acetate, was superior to the others, as evidenced by the highest deproteinization efficiency (88%), as well as the lowest polysaccharide loss (17%). And notably its antioxidant activity also remained good (loss 15%). It provides a simple prefractionation step for the analysis of polysaccharide from natural plants. Polysaccharide isolated by this method is in the native state. Our method may offer a rapid method for removing protein from plant polysaccharides in large scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bao XF, Wang XS, Dong Q, Fang JN, Li XY. Structural features of immunologically active polysaccharides from Ganoderma lucidum. Phytochemistry 59: 175–181 (2002)

    Article  CAS  Google Scholar 

  2. Franz G. Polysaccharides in pharmacy: Current applications and future concepts. Planta Med. 55: 493–497 (1989)

    Article  CAS  Google Scholar 

  3. Shiao MS. Natural products of the medicinal fungus Ganoderma lucidum: Occurrence, biological activities, and pharmacological functions. Chem. Rec. 3: 172–180 (2003)

    Article  CAS  Google Scholar 

  4. Shang D, Zhang J, Wen L, Li Y, Cui Q. Preparation, characterization, and antiproliferative activities of the Se-containing polysaccharide SeGLP-2B-1 from Se-enriched Ganoderma lucidum. J. Agr. Food Chem. 57: 7737–7742 (2009)

    Article  CAS  Google Scholar 

  5. Wang SY, Hsu ML, Hsu HC, Tzeng CH, Lee SS, Shiao MS, Ho CK. The anti-tumor effect of Ganoderma lucidum is mediated by cytokines released from activated macrophages and T lymphocytes. Int. J. Cancer 70: 699–705 (1997)

    Article  CAS  Google Scholar 

  6. Hikino H, Konno C, Mirin Y, Hayashi T. Isolation and hypoglycemic activity of ganoderans A and B, glycans of Ganoderma lucidum fruit bodies1. Planta Med. 51: 339–340 (1985)

    Article  CAS  Google Scholar 

  7. Tomoda M, Gonda R, Kasahara Y, Hikino H. Glycan structures of Ganoderma lucidum B and C, hypoglycemic glycans of Ganoderma lucidum fruiting bodies. Phytochemistry 25: 2817–2820 (1986)

    Article  CAS  Google Scholar 

  8. Eo SK, Kim YS, Lee CK, Han SS. Possible mode of antiviral activity of acidic protein bound polysaccharide isolated from Ganoderma lucidum on herpes simplex viruses. J. Ethnopharmacol. 72: 475–481 (2000)

    Article  CAS  Google Scholar 

  9. Yoon SY, Eo SK, Kim YS, Lee CK, Han SS. Antimicrobial activity of Ganoderma lucidum extract alone and in combination with some antibiotics. Arch. Pharm. Res. 17: 438–442 (1994)

    Article  CAS  Google Scholar 

  10. el-Mekkawy S, Meselhy MR, Nakamura N, Tezuka Y, Hattori M, Kakiuchi N, Shimotohno K, Kawahata T, Otake T. Anti-HIV-1 and anti-HIV-1-protease substances from Ganoderma lucidum. Phytochemistry 49: 1651–1657 (1998)

    Article  CAS  Google Scholar 

  11. Kim HW, Shim MJ, Choi EC, Kim BK. Inhibition of cytopathic effect of human immunodeficiency virus-1 by water-soluble extract of Ganoderma lucidum. Arch. Pharm. Res. 20: 425–431 (1997)

    Article  CAS  Google Scholar 

  12. Chen Y, Xie MY, Nie SP, Li C, Wang YX. Purification, composition analysis, and antioxidant activity of a polysaccharide from the fruiting bodies of Ganoderma atrum. Food Chem. 107: 231–241 (2008)

    Article  CAS  Google Scholar 

  13. Cun Z, Mizuno T, Ito H, Shimura K, Sumiya T, Kawade M. Antitumor activity and immunological property of polysaccharides from the mycelium of liquid-cultured Grifola frondosa. J. Jpn. Soc. Food Sci. 41: 724–733 (1994)

    Article  Google Scholar 

  14. Mizuno T, Zhuang C. Grifola frondosa: Pharmacological effects. Food Rev. Int. 11: 135–149 (1995)

    Article  CAS  Google Scholar 

  15. Kumagai C, Nunokawa Y, Akiyama H. The structure of cell wall manans from sake yeast. Nippon Nogeik Kaishi 55: 209–216 (1981)

    Article  CAS  Google Scholar 

  16. Qin C, Huang KX, Xu HB. Isolation and characterization of a novel polysaccharide from the mucus of the loach, Misgurnus anguillicaudatus. Carbohyd. Polym. 49: 367–371 (2002)

    Article  CAS  Google Scholar 

  17. Jiang L, He L, Fountoulakis M. Comparison of protein precipitation methods for sample preparation prior to proteomic analysis. J. Chromatogr. A 1023: 317–320 (2004)

    Article  CAS  Google Scholar 

  18. Liu J, Luo J, Sun Y, Ye H, Lu Z, Zeng X. A simple method for the simultaneous decoloration and deproteinization of crude levan extract from Paenibacillus polymyxa EJS-3 by macroporous resin. Bioresource Technol. 101: 6077–6083 (2010)

    Article  CAS  Google Scholar 

  19. Fic E, Kedracka-Krok S, Jankowska U, Pirog A, Dziedzicka-Wasylewska M. Comparison of protein precipitation methods for various rat brain structures prior to proteomic analysis. Electrophoresis 31: 3573–3579 (2010)

    Article  CAS  Google Scholar 

  20. Huang SQ, Li JW, Li YQ, Wang Z. Purification and structural characterization of a new water-soluble neutral polysaccharide GLPF1-1 from Ganoderma lucidum. Int. J. Biol. Macromol. 48: 165–169 (2011)

    Article  CAS  Google Scholar 

  21. Cattaneo C, Gelsthorpe K, Phillips P, Sokol RJ. Blood residues on stone tools: Indoor and outdoor experiments. World Archaeol. 25: 29–43 (1993)

    Article  CAS  Google Scholar 

  22. Marlar RA, Leonard BL, Billman BR, Lambert PM, Marlar JE. Biochemical evidence of cannibalism at a prehistoric Puebloan site in southwestern Colorado. Nature 407: 74–78 (2000)

    Article  CAS  Google Scholar 

  23. Nie SP, Xie MY, Wang YX. Preparation of tea glycoprotein and its application as a calibration standard for the quantification and molecular weight determination of tea glycoprotein in different tea samples by high-performance gel-permeation chromatography. Anal. Bioanal. Chem. 383: 680–686 (2005)

    Article  CAS  Google Scholar 

  24. Scott TA, Melvin EH. Determination of dextran with anthrone. Anal. Chem. 25: 1656–1661 (1953)

    Article  CAS  Google Scholar 

  25. Dubois M, Gilles K, Hamilton JK, Rebers PA, Smith F. A colorimetric method for the determination of sugars. Nature 168: 167 (1951)

    Article  CAS  Google Scholar 

  26. Ashwell G. Colorimetric analysis of sugars. Method. Enzymol. 3: 73–105 (1957)

    Article  Google Scholar 

  27. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254 (1976)

    Article  CAS  Google Scholar 

  28. Staub AM. Removal of proteins: Sevag method. pp. 5–6. In: Methods in Carbohydrate Chemistry. V. General Polysaccharides. Whistler RL, Bemiller JN, Wolfrom ML (eds). Academic Press, New York, NY, USA (1965)

    Google Scholar 

  29. Fukuda K, Uematsu T, Hamada A, Ariya S, Komatsu N. The polysaccharide from Lampteromyces japonicus. Chem. Pharm. Bull. 23: 1955–1959 (1975)

    Article  CAS  Google Scholar 

  30. Shimada K, Fujikawa K, Yahara K, Nakamura T. Antioxidative properties of wanthan on the autoxidation of soybean oil in cyclodextrin emulsion. J. Agr. Food Chem. 40: 945–948 (1992)

    Article  CAS  Google Scholar 

  31. Gagne N, Simpson BK. Use of proteolytic enzymes to facilitate recovery of chitin from shrimp wastes. Food Biotechnol. 7: 253–263 (1993)

    Article  CAS  Google Scholar 

  32. Yang J, Shih II, Tzeng Y, Wang S. Production and purification of protease from a Bacillus subtilis that can deproteinize crustacean wastes. Enzyme Microb. Tech. 26: 406–413 (2000)

    Article  CAS  Google Scholar 

  33. Wang X, Yuan Y, Wang K, Zhang D, Yang Z, Xu P. Deproteinization of gellan gum produced by Sphingomonas paucimobilis ATCC 31461. J. Biotechnol. 128: 403–407 (2007)

    Article  CAS  Google Scholar 

  34. Behera BC, Verma N, Sonone A, Makhija U. Antioxidant and antibacterial activities of lichen Usnea ghattensis in vitro. Biotechnol. Lett. 27: 991–995 (2005)

    Article  CAS  Google Scholar 

  35. Ye JY, Tang F. Studies on isolation and purification of the polysaccharide from Ganoderma Sinense. J. Southwest China Normal University (Natural Science ed.) 27: 945–949 (2002)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingyong Xie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Y., Xie, M., Li, W. et al. An effective method for deproteinization of bioactive polysaccharides extracted from lingzhi (Ganoderma atrum). Food Sci Biotechnol 21, 191–198 (2012). https://doi.org/10.1007/s10068-012-0024-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-012-0024-2

Keywords

Navigation