Skip to main content
Log in

Distinct element analysis of the microstructure evolution in granular soils under cyclic loading

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

Granular soils exhibit very complex macroscopic mechanical responses when subjected to cyclic loading. To enhance the understanding of the cyclic behaviors of granular soils and provide significant insights into the constitutive modelling, this paper investigates the microstructure and its evolution under cyclic loading using distinct element method (DEM). A series of cyclic triaxial tests in drained conditions were numerically carried out on the DEM specimens with two different initial relative densities. At particle scale, both the coordination number and contact fabric were investigated to study the microstructure evolution of the granular soils. The simulations indicate that the evolutions of coordination number and contact fabric are highly dependent on the relative density and cyclic mode. A threshold value for the fabric anisotropy exists under cyclic loading, and once the threshold is reached, the internal structure of the specimen tends to be unstable, and the critical coordination number is reached at the specimen failure. The contact normal fabric tensor is always coaxial with the stress tensor under cyclic loading regardless of the sand relative density and cyclic model. Although there is no unique relationship between the contact normal fabric and stress, a uniqueness relationship between strong contact fabric and stress can be observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Modified from Shajarati et al. [40]

Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Been, K., Jefferies, M.G.: A state parameter for sands. Géotechnique 35(2), 99–112 (1985)

    Article  Google Scholar 

  2. Chang, C.S., Whitman, R.V.: Drained permanent deformation of sand due to cyclic loading. J. Geotech. Eng. 114(10), 1164–1180 (1988)

    Article  Google Scholar 

  3. Chantawarungal, K: Numerical simulations of three dimensional granular assemblies. Ph.D. thesis, University of Waterloo, Ontario, Canada (1993)

  4. Cambou, B., Dubujet, P., Nouguier-Lehon, C.: Anisotropy in granular materials at different scales. Mech. Mater. 36(12), 1185–1194 (2004)

    Article  Google Scholar 

  5. Cundall, P.A., Strack, O.D.: A discrete numerical model for granular assemblies. Geotechnique 29(1), 47–65 (1979)

    Article  Google Scholar 

  6. Da Cruz, F., Emam, S., Prochnow, M., Roux, J.N., Chevoir, F.: Rheophysics of dense granular materials: discrete simulation of plane shear flows. Phys. Rev. E 72(2), 021309 (2005)

    Article  ADS  Google Scholar 

  7. Dafalias, Y.F., Manzari, M.T.: Simple plasticity sand model accounting for fabric change effects. J. Eng. Mech. 130(6), 622–634 (2004)

    Article  Google Scholar 

  8. Dafalias, Y.F., Papadimitriou, A.G., Li, X.S.: Sand plasticity model accounting for inherent fabric anisotropy. J. Eng. Mech. 130(11), 1319–1333 (2004)

    Article  Google Scholar 

  9. Gu, X.Q., Huang, M.S., Qian, J.G.: DEM investigation on the evolution of microstructure in granular soils under shearing. Granul. Matter 16(1), 91–106 (2014)

    Article  Google Scholar 

  10. Guo, N., Zhao, J.D.: The signature of shear-induced anisotropy in granular media. Comput. Geotech. 47, 1–15 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  11. Gao, Z.W., Zhao, J.D., Li, X.S., Dafalias, Y.F.: A critical state sand plasticity model accounting for fabric evolution. Int. J. Numer. Anal. Methods Geomech. 38(4), 370–390 (2014)

    Article  Google Scholar 

  12. Gao, Z.W., Zhao, J.D.: Constitutive modeling of anisotropic sand behavior in monotonic and cyclic loading. J. Eng. Mech. 141(8), 04015017 (2015)

    Article  Google Scholar 

  13. Hall, S.A., Bornert, M., Desrues, J., Pannier, Y., Lenoir, N., Viggiani, G., Bésuelle, P.: Discrete and continuum analysis of localised deformation in sand using X-ray μCT and volumetric digital image correlation. Géotechnique 60(5), 315 (2010)

    Article  Google Scholar 

  14. Huang, X., Kwok, C.Y., Hanley, K.J., Zhang, Z.X.: DEM analysis of the onset of flow deformation of sands: linking monotonic and cyclic undrained behaviours. Acta Geotech. 13, 1061–1074 (2018)

    Article  Google Scholar 

  15. Itasca Consulting Group Inc. PFC3D (particle flow code in three dimensions). User’s Guide (version 4.0)—General Formulation, (2008)

  16. Jiang, M.J., Konrad, J.M., Leroueil, S.: An efficient technique for generating homogeneous specimens for DEM studies. Comput. Geotech. 30(7), 579–597 (2003)

    Article  Google Scholar 

  17. Jiang, M.J., Shen, Z.F., Wang, J.F.: A novel three-dimensional contact model for granulates incorporating rolling and twisting resistances. Comput. Geotech. 65, 147–163 (2015)

    Article  Google Scholar 

  18. Jiang, M.J., Yu, H.S., Harris, D.: A novel discrete model for granular material incorporating rolling resistance. Comput. Geotech. 32(5), 340–357 (2005)

    Article  Google Scholar 

  19. Jiang, M.J., Zhang, A., Du, W: Discrete element analysis of the fabric evolution of granular soils during cyclic loading. In: Proceedings of the 7th international conference on discrete element methods, Springer, Singapore, (2017)

  20. Jiang, M.J., Zhang, A., Fu, C.: 3-D DEM simulations of drained triaxial tests on inherently anisotropic granulates. Eur. J. Environ. Civil Eng. 22(sup1), s37–s56 (2018)

    Article  Google Scholar 

  21. Kruyt, N.P.: Micromechanical study of fabric evolution in quasi-static deformation of granular materials. Mech. Mater. 44, 120–129 (2012)

    Article  Google Scholar 

  22. Li, X.S., Dafalias, Y.F.: Dilatancy for cohesionless soils. Géotechnique 50(4), 449–460 (2000)

    Article  Google Scholar 

  23. Li, X.S., Dafalias, Y.F.: Constitutive modeling of inherently anisotropic sand behavior. J. Geotech. Geoenviron. Eng. 128(10), 868–880 (2002)

    Article  Google Scholar 

  24. Li, X.S., Dafalias, Y.F.: Anisotropic critical state theory: role of fabric. J. Eng. Mech. 138(3), 263–275 (2012)

    Article  Google Scholar 

  25. Li, X., Li, X.S.: Micro-macro quantification of the internal structure of granular materials. J. Eng. Mech. 135(7), 641–656 (2009)

    Article  Google Scholar 

  26. Lee, X., Dass, W.C., Manzione, C.W. Characterization of granular material composite structures using computerized tomography. In Eng. Mech. ASCE pp. 268–271 (1992)

  27. Luong, M.P. Mechanical aspects and thermal effects of cohesionless soils under cyclic and transient loading. In: Proceedings IUTAM Conference on Deformation and Failure of Granular materials, Delft pp. 239–246 (1982)

  28. Majmudar, T.S., Behringer, R.P.: Contact force measurements and stress-induced anisotropy in granular materials. Nature 435(7045), 1079–1082 (2005)

    Article  ADS  Google Scholar 

  29. Nemat-Nasser, S.: A micromechanically-based constitutive model for frictional deformation of granular materials. J. Mech. Phys. Solids 48(6), 1541–1563 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  30. Oda, M.: Initial fabrics and their relations to mechanical properties of granular material. Soils and Found. 12(1), 18–36 (1972)

    Article  Google Scholar 

  31. O’Sullivan, C., Cui, L.: Micromechanics of granular material response during load reversals: combined dem and experimental study. Powder Technol. 193(3), 289–302 (2009)

    Article  Google Scholar 

  32. O’Sullivan, C., Cui, L., O’Neill, S.C.: Discrete element analysis of the response of granular materials during cyclic loading. Soil Found. 48(48), 511–530 (2008)

    Article  Google Scholar 

  33. Oda, M., Kawamoto, K., Suzuki, K., Fujimori, H., Sato, M.: Microstructural interpretation on reliquefaction of saturated granular soils under cyclic loading. J. Geotech. Geoenviron. Eng. 127(5), 416–423 (2001)

    Article  Google Scholar 

  34. Perez, J.L., Kwok, C.Y., Huang, X., Hanley, K.J.: Assessing the quasi-static conditions for shearing in granular media within the critical state soil mechanics framework. Soils Found. 56(1), 152–159 (2016)

    Article  Google Scholar 

  35. Phusing, D., Suzuki, K.: Cyclic behaviors of granular materials under generalized stress condition using dem. J. Eng. Mech. 141(10), 04015034 (2015)

    Article  Google Scholar 

  36. Pradhan, T.B., Tatsuoka, F., Sato, Y.: Experimental stress-dilatancy relations of sand subjected to cyclic loading. Soils Found. 29(1), 45–64 (1989)

    Article  Google Scholar 

  37. Satake, M. Fabric tensor in granular materials. In: Proceedings of the IUTAM symposi-um on deformation and failure of granular materials, Delft, Balkema pp. 63–68 (1982)

  38. Sitharam, T.G.: Discrete element modelling of cyclic behaviour of granular materials. Geotech. Geologic. Eng. 21(4), 297–329 (2003)

    Article  Google Scholar 

  39. Sazzad, M.M., Suzuki, K.: Effect of interparticle friction on the cyclic behavior of granular materials using 2D DEM. J.Geotech. Geoenviron. Eng. 137(5), 545–549 (2011)

    Article  Google Scholar 

  40. Shajarati, A., Sørensen, K.W., Nielsen, S.K., Ibsen, L.B.: Behaviour of Cohesionless Soils During Cyclic Loading. Department of Civil Engineering, Aalborg University, Aalborg (2012)

    Google Scholar 

  41. Shen, Z.F., Jiang, M.J.: DEM simulation of bonded granular material. Part II: extension to grain-coating type methane hydrate bearing sand. Comput. Geotech. 75, 225–243 (2016)

    Article  Google Scholar 

  42. Tatsuoka, F., Ishihara, K.: Drained deformation of sand under cyclic stresses reversing direction. Soils Found. 14(3), 51–65 (1974)

    Article  Google Scholar 

  43. Thornton, C.: Numerical simulations of deviatoric shear deformation of granular media. Géotechnique 50(1), 43–53 (2000)

    Article  Google Scholar 

  44. Wan, R.G., Guo, P.J.: A pressure and density dependent dilatancy model for granular materials. Soils Found. 39(6), 1–11 (1999)

    Article  Google Scholar 

  45. Wan, R.G., Guo, P.J.: Role of stress dilatancy on sand behavior: fabric, cyclic and strain. In: Computer Methods and Advances in Geomechanics: Proceedings of the 10th International Conference on Computer Methods and Advances in Geomechanics, Tucson, Arizona, USA, 7–12 Jan 2001, p. 291. CRC Press (2000)

  46. Wan, R.G., Guo, P.J.: Drained cyclic behavior of sand with fabric dependence. J. Eng. Mech. 127(11), 1106–1116 (2001)

    Article  Google Scholar 

  47. Wan, R.G., Guo, P.J.: Stress dilatancy and fabric dependencies on sand behavior. J. Eng. Mech. 130(6), 635–645 (2004)

    Article  Google Scholar 

  48. Wichtmann, T., Niemunis, A., Triantafyllidis, T.: Experimental evidence of a unique flow rule of non-cohesive soils under high-cyclic loading. Acta Geotech. 1(1), 59 (2006)

    Article  Google Scholar 

  49. Xu, X.M., Cheng, Y.P., Ling, D.S., Chen, Y.M.: Correlation between liquefaction resistance and shear wave velocity of granular soils: a micromechanical perspective. Géotechnique 65(5), 337–348 (2015)

    Article  Google Scholar 

  50. Yao, Y.P., Tian, Y., Gao, Z.W.: Anisotropic UH model for soils based on a simple transformed stress method. Int. J. Numer. Anal. Methods Geomech. 41(1), 54–78 (2017)

    Article  Google Scholar 

  51. Yimsiri, S., Soga, K.: DEM analysis of soil fabric effects on behaviour of sand. Géotechnique 60(6), 483–495 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

The research has been funded by the National Natural Science Foundation of China (Grant No. 51639008 and No. 51890911), Key innovation team program of innovation talents promotion plan by Most of China (No. 2016RA4059) and State Key Lab. of Disaster Reduction in Civil Engineering (Grant No. SLDRCE14-A-04), which supports are greatly appreciated. The support provided by China Scholarship Council (CSC) during a vist of ‘An Zhang’ to UC DAVIS is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingjing Jiang.

Ethics declarations

Conflict of interest

We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, M., Zhang, A. & Li, T. Distinct element analysis of the microstructure evolution in granular soils under cyclic loading. Granular Matter 21, 39 (2019). https://doi.org/10.1007/s10035-019-0892-8

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-019-0892-8

Keywords

Navigation