Skip to main content
Log in

Numerical analysis of critical state behaviors of granular soils under different loading conditions

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

Discrete element method is used to simulate granular assembly behaviors with different initial conditions under three different loading conditions—plain strain, conventional triaxial compression, and direct shear. Different deformation modes of specimens with different conditions are presented. Some important parameters of the critical state theory are investigated. Uniqueness of the critical state line is checked which shows that there is no a unique critical state line for specimens with different initial void ratios under different loading conditions. Frictional angles and dilation angles of specimens with different conditions at critical state are compared. Void ratios and coordination numbers of specimens at critical state are studied. Anisotropies of the particle orientation and normal contact force at initial state, critical state, as well as the evolutions during shearing are analyzed. The anisotropy is shown to have significant effects on the soil behaviors and is related to the non-uniqueness of the critical state line. The developed numerical models can be used to study the micromechanics and microstructure of the specimen subjected to different loading conditions in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Schofield A., Wroth C.P.: Critical State Soil Mechanics. McGraw-Hill, London (1968)

    Google Scholar 

  2. Poulos S.J.: The steady state of deformation. J. Geotech. Eng. Div. ASCE 107(GT5), 553–562 (1981)

    Google Scholar 

  3. Been K., Jefferies M.G.: A state parameter for sands. Geotechnique 35(2), 99–112 (1985)

    Article  Google Scholar 

  4. Been K., Jefferies M.G., Hachey J.: The critical state of sands. Geotechnique 41(3), 365–381 (1985)

    Google Scholar 

  5. Sitharam T.G., Vinod J.S.: Critical state behavior of granular materials from isotropic and rebounded paths: DEM simulations. Granul. Matter 11, 33–42 (2009)

    Article  Google Scholar 

  6. Castro G., Poulos S.J.: Factors affecting liquefaction and cyclic mobility. J. Geotech. Eng. Div. ASCE 103(GT6), 501–505 (1977)

    Google Scholar 

  7. Vaid Y.P., Chung E.K.F., Kuerbis R.H.: Stress path and steady state. Can. Geotech. J. 27(1), 1–7 (1990)

    Article  Google Scholar 

  8. Kuerbis, R., Negussey, D., Vaid, Y.P.: Effect of gradation and fines content on the undrained response of sand. ASCE Specialty Conf. Hydraulic Fill Structure, Fort Collins, CO., pp. 330–345 (1988)

  9. Mooney M.A., Finno R.J., Viggiani M.G.: A unique critical state for sand. J. Geotech. Geoenviron. Eng. 124(11), 1100–1108 (1998)

    Article  Google Scholar 

  10. Cornforth D.H.: Some experiments on influence of strain conditions on strength of sand. Geotechnique 14(2), 143–167 (1964)

    Article  MathSciNet  Google Scholar 

  11. Finno R.J., Harris W.W., Mooney M.A., Viggiani C.: Strain localization and undrained steady state of sand. J. Geotech. Eng. 122(6), 462–473 (1996)

    Article  Google Scholar 

  12. Hanna A.: Determination of plane-strain shear strength of sand from the results of triaxial tests. Can. Geotech. J. 38(6), 1231–1240 (2001)

    Article  Google Scholar 

  13. Rothenburg L., Kruyt N.P.: Critical state and evolution of coordination number in simulated granular materials. Int. J. Solids Struct. 41, 5763–5774 (2004)

    Article  MATH  Google Scholar 

  14. Cundall P.A., Strack O.D.L.: A discrete numerical model for granular assemblies. Geotechnique 29(1), 47–65 (1979)

    Article  Google Scholar 

  15. Thornton C.: Numerical simulations of deviatoric shear deformation of granular media. Geotechnique 50(1), 465–481 (2000)

    Google Scholar 

  16. Cui L., O’Sullivan C.O.: Exploring the macro- and micro-scale response of an idealized of an granular material in the direct shear apparatus. Geotechnique 56(7), 455–468 (2006)

    Article  Google Scholar 

  17. Liu S.H.: Simulating a direct shear box test by DEM. Can. Geotech. J. 43(2), 155–168 (2006)

    Article  Google Scholar 

  18. Zhao X., Evans T.M.: Discrete simulations of laboratory loading conditions. Int. J. Geomech. 9(4), 169–178 (2009)

    Article  Google Scholar 

  19. Ng T.T.: Discrete element method simulations for the critical state of a granular material. Int. J. Geomech. 9(5), 209–216 (2009)

    Article  Google Scholar 

  20. Itasca: PFC-3D: Particle flow code in two dimensions, version 3.10, Minneapolis (2005)

  21. Suiker A.S.J., Fleck N.A.: Frictional collapse of granular assemblies. J. Appl. Mech. Trans. ASME 71(3), 350–358 (2004)

    Article  ADS  MATH  Google Scholar 

  22. Powrie W., Ni Q., Harkness R.M., Zhang X.: Numerical modelling of plane strain tests on sands using a particulate approach. Geotechnique 55(4), 297–306 (2005)

    Article  Google Scholar 

  23. Cheung G., O’Sullivan C.: Effective simulation of flexible lateral boundaries in two- and three-dimensional DEM simulations. Particuology 6, 483–500 (2008)

    Article  Google Scholar 

  24. Bardet J.P.: Observations on the effects of particle rotations on the failure of idealized granular materials. Mech. Mater. 18(2), 159–182 (1994)

    Article  Google Scholar 

  25. Zhao, X.: A numerical investigation of the effect of varying loading condition on soil response. PhD thesis, North Carolina State University, Raleigh (2009)

  26. Thornton C.: Numerical simulations of deviatoric shear deformation of granular media. Geotechnique 50(1), 465–481 (2000)

    Google Scholar 

  27. Butlanska J., Arroyo M., Gens A.: Homogeneity and symmetry in DEM models of cone penetration. AIP Conf. Proc. 1145, 425–428 (2009)

    Article  ADS  Google Scholar 

  28. Frost J.D., Evans T.M.: Membrane effects in biaxial compression tests. J. Geotech. Geoenviron. Eng. 135(7), 986–991 (2009)

    Article  Google Scholar 

  29. Kruyt, N.P., Rothenburg, L.: Shear strength, dilatancy, energy and dissipation in quasi-static deformation of granular materials. J. Stat. Mech. Theory Exp. doi:10.1088/1742-5468/2006/07/P07021 (2006)

  30. Evans, T.M.: Microscale Physical and Numerical Investigations of Shear Banding in Granular Soils. PhD Thesis, Georgia Institute of Technology, Atlanta (2005)

  31. Santamarina J.C., Klein K.A., Fam M.A.: Soils and Waves. Wiley, West Sussex, England (2001)

    Google Scholar 

  32. Rowe P.W.: Relation between shear strength of sands in triaxial compression plane strain and direct shear. Geotechnique 19(1), 75–86 (1969)

    Article  Google Scholar 

  33. Peric D., Runesson K., Sture S.: Evaluation of plastic bifurcation for plane strain versus axisymmetry. J. Eng. Mech. 118(3), 512–524 (1992)

    Article  Google Scholar 

  34. Desrues J., Chambon R., Mokni M., Mazerolle F.: Void ratio evolution inside shear bands in triaxial sand specimens studied by computed tomography. Geotechnique 46(3), 529–546 (1996)

    Article  Google Scholar 

  35. Chu J., Lo S.C.R., Lee I.K.: Strain softening and shear band formation of sand in multi-axial testing. Geotechnique 46(1), 63–82 (1996)

    Article  Google Scholar 

  36. Oda M., Kazama H.: Microstructure of shear bands and its relation to the mechanisms of dilatancy and failure of dense granular soils. Geotechnique 48(4), 465–481 (1998)

    Article  Google Scholar 

  37. Liu J., Luan M., Yuan F., Wang J., Xu C.: Evaluation of effect of intermediate principal stress on sand shear strength. Rock Soil Mech. 26(12), 1931–1935 (2005)

    Google Scholar 

  38. Wood D.M.: Geotechnical Modeling. Spon Press, London and New York (2004)

    Book  Google Scholar 

  39. Antony S.J.: Evolution of force distribution in three-dimensional granular media. Phys. Rev. E. Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 63(1), 011302-1–011302-13 (2000)

    Article  Google Scholar 

  40. Rothenburg, L., Bathurst, R.J.: Influence of particle eccentricity on micromechanical behavior of granular materials. Mech. Mater. 16(1–2), Mech. Granul. Mater. 141–152 (1993)

    Google Scholar 

  41. Yang Z.X., Li X.S., Yang J.: Quantifying and modelling fabric anisotropy of granular soils. Geotechnique 58(4), 237–248 (2008)

    Article  Google Scholar 

  42. Satake, M.: Constitution of mechanics of granular materials through graph representation. Theor. Appl. Mech. 26, 257 (1978) University of Tokyo Press

    Google Scholar 

  43. Kuo C.Y., Frost J.D., Chameau J.L.A.: Image analysis determination of stereology based fabric tensors. Geotechnique 48(4), 515–525 (1998)

    Article  Google Scholar 

  44. Satake, M.: Fabric tensor in granular materials. In: Proceedings IUTAM Conference on Deformation and Failure Granular Materials, Delft, pp. 63–67 (1982)

  45. Barreto, D., O’Sullivan, C., Zdravkovic, L.: Quantifying the evolution of soil fabric under different stress paths. In: Powder and Grains 2009, Proceedings of the 6th International Conference on Micromechanics of Granular Media, pp. 181–184 (2009)

  46. Agnolin, I., Roux, J.: Internal states of model isotropic granular packings. III. Elastic properties. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 76(6), 061304-1–061304-22 (2007)

    Google Scholar 

  47. Proctor D.C., Barton R.R.: Measurements of the angle of interparticle friction. Geotechnique 24(4), 581–604 (1974)

    Article  Google Scholar 

  48. Yang, C.T.: Boundary condition and inherent stratigraphic effects on microstructure evolution in sand specimens. PhD Thesis, Georgia Institute of Technology, Atlanta (2002)

  49. Frost, J.D.: Studies on the monotonic and cyclic behavior of sands. PhD Thesis, Purdue University, West Lafayette (1989)

  50. Lee K.L.: Comparison of plane strain and triaxial tests on sand. J. Soil Mech. Found. Div. 96(3), 901–923 (1970)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueliang Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, X., Evans, T.M. Numerical analysis of critical state behaviors of granular soils under different loading conditions. Granular Matter 13, 751–764 (2011). https://doi.org/10.1007/s10035-011-0284-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-011-0284-1

Keywords

Navigation