Skip to main content

Advertisement

Log in

Altered Belowground Carbon Cycling Following Land-Use Change to Perennial Bioenergy Crops

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Belowground carbon (C) dynamics of terrestrial ecosystems play an important role in the global C cycle and thereby in climate regulation. Globally, land-use change is a major driver of changes in belowground C storage. The emerging bioenergy industry is likely to drive widespread land-use changes, including the replacement of annually tilled croplands with perennial bioenergy crops, and thereby to impact the climate system through alteration of belowground C dynamics. Mechanistic understanding of how land-use changes impact belowground C storage requires elucidation of changes in belowground C flows; however, altered belowground C dynamics following land-use change have yet to be thoroughly quantified through field measurements. Here, we show that belowground C cycling pathways of establishing perennial bioenergy crops (0- to 3.5-year-old miscanthus, switchgrass, and a native prairie mix) were substantially altered relative to row crop agriculture (corn-soy rotation); specifically, there were substantial increases in belowground C allocation (>400%), belowground biomass (400–750%), root-associated respiration (up to 2,500%), moderate reductions in litter inputs (20–40%), and respiration in root-free soil (up to 50%). This more active root-associated C cycling of perennial vegetation provides a mechanism for observed net C sequestration by these perennial ecosystems, as well as commonly observed increases in soil C under perennial bioenergy crops throughout the world. The more active root-associated belowground C cycle of perennial vegetation implies a climate benefit of grassland maintenance or restoration, even if biomass is harvested annually for bioenergy production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Al-Kaisi MM, Grote JB. 2007. Cropping systems effects on improving soil carbon stocks of exposed subsoil. Soil Sci Soc Am J 71:1381.

    Article  CAS  Google Scholar 

  • Anderson-Teixeira KJ, DeLucia EH. 2011. The greenhouse gas value of ecosystems. Glob Change Biol 17(1):425–38.

    Article  Google Scholar 

  • Anderson-Teixeira KJ, Davis SC, Masters MD, DeLucia EH. 2009. Changes in soil organic carbon under biofuel crops. GCB Bioenergy 1(1):75–96.

    Article  CAS  Google Scholar 

  • Anderson-Teixeira KJ, Snyder PK, DeLucia EH. 2011. Do biofuels life cycle analyses accurately quantify the climate impacts of biofuels-related land use change? Ill Law Rev 2:589–622.

    Google Scholar 

  • Anderson-Teixeira KJ, Snyder PK, Twine TE, Cuadra SV, Costa MH, DeLucia EH. 2012. Climate-regulation services of natural and agricultural ecoregions of the Americas. Nat Climate Change 2(3):177–81.

    Article  Google Scholar 

  • Bernacchi CJ, Hollinger SE, Meyers TP. 2005. The conversion of the corn/soybean ecosystem to no-till agriculture may result in a carbon sink. Glob Change Biol 11(11):1872.

    Google Scholar 

  • Blanco-Canqui H. 2010. Energy crops and their implications on soil and environment. Agron J 102:403.

    Article  CAS  Google Scholar 

  • Blanco-Canqui H, Lal R. 2007. Soil and crop response to harvesting corn residues for biofuel production. Geoderma 141(3–4):355–62.

    Article  CAS  Google Scholar 

  • Chapin F, Woodwell G, Randerson J, Rastetter E, Lovett G, Baldocchi D, Clark D, Harmon M, Schimel D, Valentini R et al. 2006. Reconciling carbon-cycle concepts, terminology, and methods. Ecosystems 9(7):1041–50.

    Article  CAS  Google Scholar 

  • Crutzen PJ, Mosier AR, Smith KA, Winiwarter W. 2008. N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels. Atmos Chem Phys 8:389–95.

    Article  CAS  Google Scholar 

  • Davidson E, Ackerman I. 1993. Changes in soil carbon inventories following cultivation of previously untilled soils. Biogeochemistry 20:161–93.

    Article  CAS  Google Scholar 

  • Davis S, Parton W, Dohleman F, Smith C, Grosso S, Kent A, DeLucia E. 2010. Comparative biogeochemical cycles of bioenergy crops reveal nitrogen-fixation and low greenhouse gas emissions in a miscanthus × giganteus agro-ecosystem. Ecosystems 13(1):144–56.

    Article  CAS  Google Scholar 

  • Davis SC, Parton WJ, Del Grosso SJ, Keough C, Marx E, Adler PR, DeLucia EH. 2011. Impact of second-generation biofuel agriculture on greenhouse-gas emissions in the corn-growing regions of the US. Front Ecol Environ. 110706144507005.

  • DeLuca TH, Zabinski CA. 2011. Prairie ecosystems and the carbon problem. Front Ecol Environ 9:407–13.

    Article  Google Scholar 

  • Dohleman FG, Heaton EA, Arundale RA, Long SP. 2012. Seasonal dynamics of above- and below-ground biomass and nitrogen partitioning in miscanthus × giganteus and Panicum virgatum across three growing seasons. GCB Bioenergy [Epub ahead of print]. doi:10.1111/j.1757-1707.2011.01153.x.

  • Fargione J, Hill J, Tilman D, Polasky S, Hawthorne P. 2008. Land clearing and the biofuel carbon debt. Science 319(5867):1235–8.

    Article  PubMed  CAS  Google Scholar 

  • Fargione JE, Plevin RJ, Hill JD. 2010. The ecological impact of biofuels. Ann Rev Ecol Evol Syst 41(1):351–77.

    Article  Google Scholar 

  • Fontaine S, Barot S, Barré P, Bdioui N, Mary B, Rumpel C. 2007. Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature 450(7167):277–80.

    Article  PubMed  CAS  Google Scholar 

  • Fornara DA, Tilman D. 2008. Plant functional composition influences rates of soil carbon and nitrogen accumulation. J Ecol 96(2):314–22.

    Article  CAS  Google Scholar 

  • Frank AB, Berdahl JD, Hanson JD, Liebig MA, Johnson HA. 2004. Biomass and carbon partitioning in switchgrass. Crop Sci 44(4):1391.

    Article  CAS  Google Scholar 

  • Fu S, Cheng W. 2002. Rhizosphere priming effects on the decomposition of soil organic matter in C4 and C3 grassland soils. Plant Soil 238(2):289–94.

    Article  CAS  Google Scholar 

  • Gelfand I, Zenone T, Jasrotia P, Chen J, Hamilton SK, Robertson GP. 2011. Carbon debt of conservation reserve program (CRP) grasslands converted to bioenergy production. Proc Natl Acad Sci USA 108(33):13864–9.

    Article  PubMed  CAS  Google Scholar 

  • Georgescu M, Lobell DB, Field CB. 2009. Potential impact of US biofuels on regional climate. Geophys Res Lett 36(21):L21806.

    Article  Google Scholar 

  • Georgescu M, Lobell DB, Field CB. 2011. Direct climate effects of perennial bioenergy crops in the United States. Proc Natl Acad Sci USA 108(11):4307–12.

    Article  PubMed  CAS  Google Scholar 

  • Gomez-Casanovas N, Anderson-Teixeira KJ, Zeri M, Bernacchi C, DeLucia E. 2013. Gap filling strategies and error in estimating annual soil respiration. Glob Change Biol

  • Grandy A, Robertson G. 2007. Land-use intensity effects on soil organic carbon accumulation rates and mechanisms. Ecosystems 10(1):59–74.

    Article  Google Scholar 

  • Guo LB, Gifford RM. 2002. Soil carbon stocks and land use change: a meta analysis. Glob Change Biol 8(4):345–60.

    Article  Google Scholar 

  • Heaton E, Dohleman FG, Long SP. 2008. Meeting US biofuel goals with less land: the potential of Miscanthus. Glob Change Biol 14(9):2000–14.

    Article  Google Scholar 

  • Jobbágy EG, Jackson RB. 2000. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol Appl 10(2):423–36.

    Article  Google Scholar 

  • Kuzyakov Y, Friedel J, Stahr K. 2000. Review of mechanisms and quantification of priming effects. Soil Biol Biochem 32(11–12):1485–98.

    Article  CAS  Google Scholar 

  • Lal R. 2004. Soil carbon sequestration impacts on global climate change and food security. Science 304(5677):1623–7.

    Article  PubMed  CAS  Google Scholar 

  • Le Quéré C, Raupach MR, Canadell JG, Marland G et al. 2009. Trends in the sources and sinks of carbon dioxide. Nat Geosci 2(12):831–6.

    Article  Google Scholar 

  • Lloyd J, Taylor J. 1994. On the temperature dependence of soil respiration. Funct Ecol 8(3):315–23.

    Article  Google Scholar 

  • Lobo Alonzo PJ. 2004. Changes in soil carbon and nitrogen associated with switchgrass production. College Station, TX: M.S., Texas A&M University.

    Google Scholar 

  • Ma Z, Wood CW, Bransby DI. 2000. Impacts of soil management on root characteristics of switchgrass. Biomass Bioenergy 18(2):105–12.

    Article  CAS  Google Scholar 

  • Matamala RNL, Jastrow JD, Miller RMNL, Garten CT Jr. 2008. Temporal changes in C and N stocks of restored prairie: implications for C sequestration strategies. Ecol Appl 18:1470–88.

    Article  PubMed  CAS  Google Scholar 

  • McLaughlin SB, Kszos LA. 2005. Development of switchgrass (Panicum virgatum) as a bioenergy feedstock in the United States. Biomass Bioenergy 28(6):515.

    Article  Google Scholar 

  • Melillo JM, Reilly JM, Kicklighter DW, Gurgel AC, Cronin TW, Paltsev S, Felzer BS, Wang X, Sokolov AP, Schlosser CA. 2009. Indirect emissions from biofuels: how important? Science 326(5958):1397–9.

    Article  PubMed  CAS  Google Scholar 

  • Miresmailli S, Zeri M, Zangerl AR, Bernacchi CJ, Berenbaum MR, DeLucia EH. 2012. Impacts of herbaceous bioenergy crops on atmospheric volatile organic composition and potential consequences for global climate change. GCB Bioenergy [Epub ahead of print]. doi:10.1111/j.1757-1707.2012.01189.x.

  • Monti A, Zatta A. 2009. Root distribution and soil moisture retrieval in perennial and annual energy crops in Northern Italy. Agric Ecosyst Environ 132(3–4):252–9.

    Article  Google Scholar 

  • Murty D, Kirschbaum M, McMurtrie RE, McGilvray H. 2002. Does conversion of forest to agricultural land change soil carbon and nitrogen? A review of the literature. Glob Change Biol 8:105–23.

    Article  Google Scholar 

  • Neukirchen D, Himken M, Lammel J, Czypionka-Krause U, Olfs H-W. 1999. Spatial and temporal distribution of the root system and root nutrient content of an established Miscanthus crop. Eur J Agron 11(3–4):301–9.

    Article  Google Scholar 

  • Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG et al. 2011. A large and persistent carbon sink in the world’s forests. Science 333(6045):988–93.

    Article  PubMed  CAS  Google Scholar 

  • R Development Core Team. 2008. R: a language and environment for statistical computing. Vienna, Australia: R Foundation for Statistical Computing. http://www.R-project.org. Accessed 1 May 2011.

  • Rasse DP, Schabenberger O, Smucker AJM. 1999. Modifications of soil nitrogen pools in response to alfalfa root systems and shoot mulch. Agron J 91(3):471–7.

    Article  Google Scholar 

  • Rasse D, Rumpel C, Dignac M-F. 2005. Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation. Plant Soil 269(1):341–56.

    Article  CAS  Google Scholar 

  • Roberts MJ, Long SP, Tieszen LL, Beadle CL. 1993. Measurement of plant biomass and net primary production of herbaceous vegetation. In: Hall DO, Scurlock JMO, Bolhar-Nordenkampf HR, Leegood RC, Long SP, Eds. Photosynthesis and production in a changing environment: a field and laboratory manual. London: Chapman and Hall.

    Google Scholar 

  • Robertson GP, Hamilton SK, Del Grosso SJ, Parton WJ. 2011. The biogeochemistry of bioenergy landscapes: carbon, nitrogen, and water considerations. Ecol Appl 21:1055–67.

    Article  PubMed  Google Scholar 

  • Ryan MG, Law BE. 2005. Interpreting, measuring, and modeling soil respiration. Biogeochemistry 73:3–27.

    Article  Google Scholar 

  • Schlesinger WH. 2005. Biogeochemistry: treatise on geochemistry, vol 8. 1st edn. Amsterdam: Elsevier Science.

    Google Scholar 

  • Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kögel-Knabner I, Lehmann J, Manning DAC et al. 2011. Persistence of soil organic matter as an ecosystem property. Nature 478(7367):49–56.

    Article  PubMed  CAS  Google Scholar 

  • Searchinger T, Heimlich R, Houghton RA, Dong F, Elobeid A, Fabiosa J, Tokgoz S, Hayes D, Yu T-H. 2008. Use of US croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319(5867):1238–40.

    Article  PubMed  CAS  Google Scholar 

  • Somerville C, Youngs H, Taylor C, Davis SC, Long SP. 2010. Feedstocks for lignocellulosic biofuels. Science 329(5993):790–2.

    Article  PubMed  CAS  Google Scholar 

  • Tilman D, Hill J, Lehman C. 2006. Carbon-negative biofuels from low-input high-diversity grassland biomass. Science 314(5805):1598–600.

    Article  PubMed  CAS  Google Scholar 

  • US Senate. 2007. Renewable Fuels, Consumer Protection, and Energy Efficiency Act of 2007 (S. 1419). Washington, DC: US Senate. June 21, 2007.

  • Vanloocke A, Bernacchi CJ, Twine TE. 2010. The impacts of miscanthus × giganteus production on the Midwest US hydrologic cycle. GCB Bioenergy 2(4):180–91.

    Google Scholar 

  • Zenone T, Chen J, Deal MW, Wilske B, Jasrotia P, Xu J, Bhardwaj AK, Hamilton SK, Philip RG. 2011. CO2 fluxes of transitional bioenergy crops: effect of land conversion during the first year of cultivation. GCB Bioenergy 3(5):401–12.

    Article  Google Scholar 

  • Zeri M, Anderson-Teixeira K, Hickman G, Masters M, DeLucia E, Bernacchi CJ. 2011. Carbon exchange by establishing biofuel crops in Central Illinois. Agric Ecosyst Environ 144(1):319–29.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Thank you to Tom Voigt and Emily Thomas for providing harvest yield data, to Tim Mies for help with Energy Farm logistics, to Nuria Gomez-Casanovas for contributions to analysis of gap-filling methods, and to Beth Yendrek for the illustration in Figure 7. The Energy Biosciences Institute funded this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evan H. DeLucia.

Additional information

Author Contributions

K.J.A.T, C.J.B., and E.H.D. conceived of or designed study, K.J.A.T, M.D.M., M.Z., and M.Z.H. performed research, K.J.A.T., C.K.B., M.Z., and M.Z.H. analyzed data, all authors contributed to write the article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anderson-Teixeira, K.J., Masters, M.D., Black, C.K. et al. Altered Belowground Carbon Cycling Following Land-Use Change to Perennial Bioenergy Crops. Ecosystems 16, 508–520 (2013). https://doi.org/10.1007/s10021-012-9628-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-012-9628-x

Keywords

Navigation