Skip to main content
Log in

Improved capacity and cycling stability of Li2FeSiO4 nanocrystalline induced by nitrogen-doped carbon coating

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A series of nitrogen-doped carbon coating Li2FeSiO4-C (LFS-NCs) nanocrystalline was manufactured by using dicyandiamide as the nitrogen source. The introduction of nitrogen did not cause structural changes. However, it slightly decreases the average particle size and increases the lithium ion diffusion coefficients which benefit its electrochemical performance, especially at low discharge current density. Also, the enhanced electronic conductivity took positive effect in improving the electrochemical performance, especially at relative higher current density. Sample with nitrogen content of 0.55 wt.% shows the best electrochemical performance, with high capacity of 293.4 mAh g−1 at 0.1 C, corresponding to 1.77 reversible Li+ extraction/insertion per molecular. At 0.2 C after 50 cycles, the capacity stabled at 172.7 mAh g−1, showing excellent cyclic performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Nytén A, Abouimrane A, Armand M, Gustafsson T, Thomas JO (2005) Electrochemical performance of Li2FeSiO4 as a new Li-battery cathode material. Electrochem Commun 7(2):156–160

    Article  Google Scholar 

  2. Ni J, Jiang Y, Bi X, Li L, Lu J (2017) Lithium iron orthosilicate cathode: progress and perspectives. ACS Energy Lett 2(8):1771–1781

    Article  CAS  Google Scholar 

  3. Lv D, Bai J, Zhang P, Wu S, Li Y, Wen W, Jiang Z, Mi J, Zhu Z, Yang Y (2013) Understanding the high capacity of Li2FeSiO4: in situ XRD/XANES study combined with first-principles calculations. Chem Mater 25(10):2014–2020

    Article  CAS  Google Scholar 

  4. Sivaraj P, Abhilash KP, Nalini B, Selvin PC, Goel S, Yadav SK (2019) Insight into cations substitution on structural and electrochemical properties of nanostructured Li2FeSiO4/C cathodes. J Am Ceram Soc 103(3):1685–1697

    Article  Google Scholar 

  5. Armstrong AR, Kuganathan N, Islam MS, Bruce PG (2011) Structure and lithium transport pathways in Li2FeSiO4 cathodes for lithium batteries. J Am Chem Soc 133(33):13031–13035

    Article  CAS  PubMed  Google Scholar 

  6. Nytén A, Kamali S, Häggström L, Gustafsson T, Thomas JO (2006) The lithium extraction/insertion mechanism in Li2FeSiO4. J Mater Chem 16(23):2266–2272

    Article  Google Scholar 

  7. Qiu H, Jin D, Wang C, Chen G, Wang L, Yue H, Zhang D (2020) Design of Li2FeSiO4 cathode material for enhanced lithium-ion storage performance. Chem Eng J 379:122329

    Article  CAS  Google Scholar 

  8. Peng P, Guo W, Zhang Y, Wang Y, Zhu K, Guo Y, Wang Y, Lu Y, Yan H (2019) The core-shell heterostructure CNT@Li2FeSiO4@C as a highly stable cathode material for lithium-ion batteries. Nanoscale Res Lett 14(1):326

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ding Z, Zhang D, Feng Y, Zhang F, Chen L, Du Y, Ivey DG, Wei W (2018) Tuning anisotropic ion transport in mesocrystalline lithium orthosilicate nanostructures with preferentially exposed facets. NPG Asia Mater 10(7):606–617

    Article  CAS  Google Scholar 

  10. Xu Y, Shen W, Zhang A, Liu H, Ma Z (2014) Template-free hydrothermal synthesis of Li2FeSiO4 hollow spheres as cathode materials for lithium-ion batteries. J Mater Chem A 2(32):12982

    Article  CAS  Google Scholar 

  11. Shen S, Zhang Y, Wei G, Zhang W, Yan X, Xia G, Wu A, Ke C, Zhang J (2018) Li2FeSiO4/C hollow nanospheres as cathode materials for lithium-ion batteries. Nano Res 12(2):357–363

    Article  Google Scholar 

  12. Hsu C-H, Du T-R, Tsao C-H, Lin H-P, Kuo P-L (2019) Hollow Li2FeSiO4 spheres as cathode and anode material for lithium-ion battery. J Alloys Compd 797:1007–1012

    Article  CAS  Google Scholar 

  13. Zeng Y, Chiu H-C, Rasool M, Brodusch N, Gauvin R, Jiang D-T, Ryan DH, Zaghib K, Demopoulos GP (2019) Hydrothermal crystallization of Pmn21 Li2FeSiO4 hollow mesocrystals for Li-ion cathode application. Chem Eng J 359:1592–1602

    Article  CAS  Google Scholar 

  14. Zhang W, Liang L, Ju Y, Liu Y, Hou L, Yuan C (2019) Efficient electrospinning fabrication and the underlying formation mechanism of one-dimensional monoclinic Li2FeSiO4 nanofibers. CrystEngComm 21(42):6340–6345

    Article  CAS  Google Scholar 

  15. Rangappa D, Murukanahally KD, Tomai T, Unemoto A, Honma I (2012) Ultrathin nanosheets of Li2MSiO4 (M = Fe, Mn) as high-capacity Li-ion battery electrode. Nano Lett 12(3):1146–1151

    Article  CAS  PubMed  Google Scholar 

  16. Devaraju MK, Tomai T, Honma I (2013) Supercritical hydrothermal synthesis of rod like Li2FeSiO4 particles for cathode application in lithium ion batteries. Electrochim Acta 109:75–81

    Article  CAS  Google Scholar 

  17. Yang J, Hu L, Zheng J, He D, Tian L, Mu S, Pan F (2015) Li2FeSiO4 nanorods bonded with graphene for high performance batteries. J Mater Chem A 3(18):9601–9608

    Article  CAS  Google Scholar 

  18. Yang J, Kang X, He D, Zheng A, Pan M, Mu S (2015) Graphene activated 3D-hierarchical flower-like Li2FeSiO4 for high-performance lithium-ion batteries. J Mater Chem A 3(32):16567–16573

    Article  CAS  Google Scholar 

  19. Yan H, Xue X, Fu Y, Wu X, Dong J (2020) Three-dimensional carbon nanotubes-encapsulated Li2FeSiO4 microspheres as advanced positive materials for lithium energy storage. Ceram Int 46(7):9729–9733

    Article  CAS  Google Scholar 

  20. Rasool M, Chiu HC, Zank B, Zeng Y, Zhou J, Zaghib K, Perepichka DF, Demopoulos GP (2020) PEDOT encapsulated and mechanochemically engineered silicate nanocrystals for high energy density cathodes. Adv Mater Interfaces 7(13):2000226

    Article  CAS  Google Scholar 

  21. Zheng Z, Wang Y, Zhang A, Zhang T, Cheng F, Tao Z, Chen J (2012) Porous Li2FeSiO4/C nanocomposite as the cathode material of lithium-ion batteries. J Power Sources 198:229–235

    Article  CAS  Google Scholar 

  22. Zeng Y, Chiu H-C, Ouyang B, Song J, Zaghib K, Demopoulos GP (2019) Unveiling the mechanism of improved capacity retention in Pmn21 Li2FeSiO4 cathode by cobalt substitution. J Mater Chem A 7(44):25399–25414

    Article  CAS  Google Scholar 

  23. Qiu H, Yue H, Wang X, Zhang T, Zhang M, Fang Z, Zhao X, Chen G, Wei Y, Wang C, Zhang D (2017) Titanium-doped Li2FeSiO4/C composite as the cathode material for lithium-ion batteries with excellent rate capability and long cycle life. J Alloys Compd 725:860–868

    Article  CAS  Google Scholar 

  24. Kumar A, Jayakumar OD, Jagannath J, Bashiri P, Nazri GA, Naik VM, Naik R (2017) Mg doped Li2FeSiO4/C nanocomposites synthesized by the solvothermal method for lithium ion batteries. Dalton Trans 46(38):12908–12915

    Article  CAS  PubMed  Google Scholar 

  25. Wang K, Teng G, Yang J, Tan R, Duan Y, Zheng J, Pan F (2015) Sn(ii,iv) steric and electronic structure effects enable self-selective doping on Fe/Si-sites of Li2FeSiO4 nanocrystals for high performance lithium ion batteries. J Mater Chem A 3(48):24437–24445

    Article  CAS  Google Scholar 

  26. Bai T, Zhou H, Zhou X, Liao Q, Chen S, Yang J (2017) N-doped carbon-encapsulated MnO@graphene nanosheet as high-performance anode material for lithium-ion batteries. J Mater Sci 52(19):11608–11619

    Article  CAS  Google Scholar 

  27. Wang J, Liu G, Fan K, Zhao D, Liu B, Jiang J, Qian D, Yang C, Li J (2018) N-doped carbon coated anatase TiO2 nanoparticles as superior Na-ion battery anodes. J Colloid Interface Sci 517:134–143

    Article  CAS  PubMed  Google Scholar 

  28. Kim H, Lim H, Kim H-S, Kim KJ, Byun D, Choi W (2018) Polydopamine-derived N-doped carbon-wrapped Na3V2(PO4)3 cathode with superior rate capability and cycling stability for sodium-ion batteries. Nano Res 12(2):397–404

    Article  Google Scholar 

  29. Cao Y, Mao S, Li M, Chen Y, Wang Y (2017) Metal/porous carbon composites for heterogeneous catalysis: old catalysts with improved performance promoted by N-doping. ACS Catal 7(12):8090–8112

    Article  CAS  Google Scholar 

  30. Yang M, Zhou Z (2017) Recent breakthroughs in supercapacitors boosted by nitrogen-rich porous carbon materials. Adv Sci 4(8):1600408

    Article  Google Scholar 

  31. Wu J, Pan Z, Zhang Y, Wang B, Peng H (2018) The recent progress of nitrogen-doped carbon nanomaterials for electrochemical batteries. J Mater Chem A 6(27):12932–12944

    Article  CAS  Google Scholar 

  32. Xu X, Niu F, Wang C, Li Y, Zhao C, Yang J, Qian Y (2019) Li3VO4 nanoparticles in N-doped carbon with porous structure as an advanced anode material for lithium-ion batteries. Chem Eng J 370:606–613

    Article  CAS  Google Scholar 

  33. Zhao Y, Wang F, Wang C, Wang S, Wang C, Zhao Z, Duan L, Liu Y, Wu Y, Li W, Zhao D (2019) Encapsulating highly crystallized mesoporous Fe3O4 in hollow N-doped carbon nanospheres for high-capacity long-life sodium-ion batteries. Nano Energy 56:426–433

    Article  CAS  Google Scholar 

  34. Liu H, Zhang S, Chen Y, Zhang J, Guo P, Liu M, Lu X, Zhang J, Wang Z (2018) Rational design of TiO2@ nitrogen-doped carbon coaxial nanotubes as anode for advanced lithium ion batteries. Appl Surf Sci 458:1018–1025

    Article  CAS  Google Scholar 

  35. Gao HY, Wu QQ, Guo M, Yang SQ, Zhao YN, Kwon Y-U (2019) Rationally fabricating nitrogen-doped carbon coated nanocrystalline Li2FeSiO4@N-C with excellent Li-ion battery performances. Electrochim Acta 318:720–729

    Article  CAS  Google Scholar 

  36. Yuan C, Chen W, Yan L (2012) Amino-grafted graphene as a stable and metal-free solid basic catalyst. J Mater Chem 22(15):7456

    Article  CAS  Google Scholar 

  37. Sheng ZH, Shao L, Chen JJ, Bao WJ, Wang FB, Xia XH (2011) Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis. ACS Nano 5(6):4350–4358

    Article  CAS  PubMed  Google Scholar 

  38. Wang H, Zhang C, Liu Z, Wang L, Han P, Xu H, Zhang K, Dong S, Yao J, Cui G (2011) Nitrogen-doped graphene nanosheets with excellent lithium storage properties. J Mater Chem 21(14):5430

    Article  CAS  Google Scholar 

  39. Chizari K, Vena A, Laurentius L, Sundararaj U (2014) The effect of temperature on the morphology and chemical surface properties of nitrogen-doped carbon nanotubes. Carbon 68:369–379

    Article  CAS  Google Scholar 

  40. Shen W, Wang C, Xu Q, Liu H, Wang Y (2015) Nitrogen-doping-induced defects of a carbon coating layer facilitate Na-storage in electrode materials. Adv Energy Mater 5(1):1400982

    Article  Google Scholar 

  41. Du X, Zhao H, Lu Y, Gao C, Xia Q, Zhang Z (2016) Electrochemical properties of nanostructured Li2FeSiO4/C synthesized by a simple co-precipitation method. Electrochim Acta 188:744–751

    Article  CAS  Google Scholar 

  42. Yi L, Wang X, Wang G, Bai Y, Liu M, Wang X, Yu R (2016) Improved electrochemical performance of spherical Li2FeSiO4/C cathode materials via Mn doping for lithium-ion batteries. Electrochim Acta 222:1354–1364

    Article  CAS  Google Scholar 

  43. Zhang Q, Yan C, Meng Y, Wang X (2018) Hierarchical mesoporous Li2FeSiO4/C sheaf-rods as a high-performance lithium-ion battery cathode. J Alloys Compd 767:195–203

    Article  CAS  Google Scholar 

  44. Zhang Q, Yan C, Guo J, Wang X (2017) Mesoporous Li2FeSiO4/C nanocomposites with enhanced performance synthesized from fumed nano silica. Ionics 24(9):2555–2563

    Article  Google Scholar 

  45. Liu L, Shi G, Lu Y, Lian T, Zhao J, An H, Ma L (2019) Hydrothermal growth kinetics and electrochemical properties of Li2FeSiO4 nanoparticles. J Alloys Compd 797:1232–1239

    Article  CAS  Google Scholar 

  46. Yi L, Wang G, Bai Y, Liu M, Wang X, Liu M, Wang X (2017) The effects of morphology and size on performances of Li2FeSiO4/C cathode materials. J Alloys Compd 721:683–690

    Article  CAS  Google Scholar 

  47. Thayumanasundaram S, Rangasamy VS, Seo JW, Locquet J-P (2017) A combined approach: polyol synthesis of nanocrystalline Li2FeSiO4, doping multi-walled carbon nanotubes, and ionic liquid electrolyte to enhance cathode performance in Li-ion batteries. Electrochim Acta 258:1044–1052

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by Natural Science Foundations of China (No. 21703152, 21801136), and the Natural Science Foundations of Tianjin (No. 19JCQNJC02000, No. 18JCTPJC61200, and No. 18JCYBJC89100), the Foundation of Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) in Nankai University, and the Open Fund of Fujian Provincial Key Laboratory of Eco-Industrial Green Technology (No. WYKF2019-4).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haiyan Gao or Shaofeng Lou.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, H., Deng, X., Wu, Q. et al. Improved capacity and cycling stability of Li2FeSiO4 nanocrystalline induced by nitrogen-doped carbon coating. J Solid State Electrochem 25, 1679–1689 (2021). https://doi.org/10.1007/s10008-021-04940-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-021-04940-y

Keywords

Navigation