Skip to main content
Log in

Contributions of A.N. Frumkin and the Frumkin School to power sources research

  • Review Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The historical interplay between the theoretical researches of the Frumkin School and the development of modern power sources technology is described. We show that the combination of solid fundamental knowledge with individual talent was the crucial factor in the development of power sources research and industry in the former USSR. Since historical trends tend to persist over time, it is clear that future developments of power sources will also require substantial inputs from basic electrochemistry, even if such requirements are not obvious to many present-day research managers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. We should mention that one of the motivations for the studies of surface phenomena was initially mineral flotation, a very important technological process in the field of hydrometallurgy [36].

  2. Institute name in Russian was “Elementno-elektrougol’nyi institut.”

  3. NIIEI is the institute of carbon research for electrical applications (“Institut elektrougol’nykh izdeliy”).

References

  1. Petrii OA, Fletcher S (2015) The Frumkin era in electrochemistry. In: Scholz F (ed) Electrochemistry in a divided world: innovations in Eastern Europe in the 20th century. Springer, Berlin, pp 49–96

    Chapter  Google Scholar 

  2. Skundin AM, Tsirlina GA (2014) V. S. Bagotsky’s contribution to modern electrochemistry. J Solid State Electrochem 18:1147–1169

    Article  CAS  Google Scholar 

  3. Bagotsky VS (1959) The electrode processes in new electrochemical power sources—proceedings of the meeting on electrochemistry (1956). AN USSR, Moscow, pp 737–743 (In Russian)

    Google Scholar 

  4. Bagotsky VS (2011) Fuel cells, batteries, and the development of electrochemistry. J Solid State Electrochem 15:1559–1562

    Article  CAS  Google Scholar 

  5. Bagotsky VS, Skundin AM, Volfkovich YM (2015) Electrochemical power sources: batteries, fuel cells, and supercapacitors. In: Electrochemical Society Series. Wiley, Chichester 372 p

    Google Scholar 

  6. Bagotsky VS, Flyorov VN (1962) Advances in chemical power sources. Gosenergoizdat, Moscow (in Russian), 240 p. Romanian Translation: Bagotski VS, Flerov VN (1964) in: Surse de current chimice, partea a II-a, Editura tehnica, Bucuresti, p. 434–595. Polish Translation: Bagocki WS, Florow WN (1965) Chemiczne zrodla energii elektrycznej, Wydaw n. naukowo-techniczne, Warszawa.

  7. Bagotsky VS, Skundin AM (1981) Chemical power sources. “Energoizdat” Publ. Moscow (in Russian), 360 p. English Translation: Bagotzky VS, Skundin AM (1980) Chemical power sources. Academic Press, London a.o. Czech Translation: Bagockij VS, Skundin AM (1987) Electrochemicke zdroje proudu. Nakladatelstvi Technicke Literatury, Praha.

  8. Bagotsky VS (2009) Fuel cells. Problems and solutions, vol 2012, 2nd edn. Wiley, Hoboken, p 320

    Google Scholar 

  9. Gurevich IG, Vol’fkovich YM, Bagotsky VS (1974) Liquid porous electrodes. “Nauka i Tekhnika” Publ, Minsk (in Russian), 205 p

    Google Scholar 

  10. Frumkin AN, Bagotsky VS, Iofa ZA, Kabanov BN (1952) Kinetics of the electrode processes. Moscow State University Publ., Moscow (in Russian), 318 p. English Translation: Frumkin AN, Bagotsky VS, Iofa ZA, Kabanov BN (1967) Kinetics of electrode processes. Foreign Technol. Div., Nr. FTD-HT-67-153, Wright-Patterson Air Force Base, Ohio. Chinese Translation: Frumkin AN, Bagotsky VS, Iofa ZA, Kabanov BN (1957) Kinetics of electrode processes, Beijing.

  11. Jacobi BS (1957) Essays on electrochemistry, Izd. Akad. Nauk SSSR, Moscow-Leningrad. Frumkin’s preface, pp 3–26 (in Russian)

    Google Scholar 

  12. Frumkin A (1920) On the theory of electrocapillarity. I. Philos Mag 40:363–375; II. Philos Mag 40:375–385

    Article  Google Scholar 

  13. Frumkin A (1920) On the theory of electrocapillarity. II Philos Mag 40:375–385

    Article  Google Scholar 

  14. Frumkin A (1919) Electrocapillary phenomena and electrode potentials. Odessa, Tipographiya Sapozhnikova. (This book is also known as Frumkin’s dissertation.)

  15. Faraday M (1834) Experimental researches in electricity, Eighth Series. §. 14. On the electricity of the voltaic pile; its source, quantity, intensity, and general characters, Phil. Trans. Royal Soc. London 124:425–470

    Google Scholar 

  16. Nernst W (1889) Die elektromotorische Wirksamkeit der Jonen [The electromotive force of ions]. Z Physik Chem 4:129–181

    Article  Google Scholar 

  17. Millikan RA (1921) The distinction between intrinsic and spurious contact EMF’s and the question of the absorption of radiation by metals in quanta. Phys Rev 18:236–244

    Article  CAS  Google Scholar 

  18. Frumkin A, Gorodetzkaja A (1928) Kapillarelektrische Erscheinungen und Hautchenbildung am flüssigen Gallium. [Electrocapillary phenomena and thin film formation on liquid gallium.]. Z Phys Chem 136:215–227

    Article  CAS  Google Scholar 

  19. Frumkin A, Gorodetzkaja A (1928) Kapillarelektrische Erscheinungen an Amalgamen. I. Thalliumamalgame [Electrocapillary effects on amalgams. I. Thallium amalgam]. Z Phys Chem 136:451–472

    Article  CAS  Google Scholar 

  20. Obrutschewa A (1938) Uber den Mechanismus der Potentialeinstellung von Platin in Silbersalzloesungen. [On the mechanism of potential control of platinum in silver salt solutions.] Acta Physicochim. URSS 8:679–696

    Google Scholar 

  21. Temkin MI (1946) Problema Volta v Elektrokhimii [Volta’s problem in electrochemistry.] Izv AN SSSR. OKhN No 3:235–244 (in Russian)

    Google Scholar 

  22. Avetisov AK, Kuchaev VL, Petrii OA, Tsirlina GA (2009) Temkin Mikhail (Menassii) Isaakovich 16.09.1908–01.10.1991. Russ J Electrochem 45:957–959

    Article  Google Scholar 

  23. Murzin DY (2019) On the scientific heritage of Mikhail Isaakovich Temkin. Kinet Catal 60:738–751

    Article  Google Scholar 

  24. Eucken A (1930) Lehrbuch der Chemischen Physik. Leipzig: Bd 2 Makrozustande Der Materie. Russian translation: (1933) Kurs khimicheskoi fiziki, v.2 with supplements of A.N. Frumkin. ONTI Goskhimizdat, Moscow

    Google Scholar 

  25. Erdey-Grúz T, Volmer M (1930) Zur Theorie der Wasserstoff Überspannung. Z Phys Chem 150:203–213

    Article  Google Scholar 

  26. Frumkin A (1933) Wasserstoffüberspannung und Struktur der Doppelschicht. Z phys Chem A 164:121–133

    Article  Google Scholar 

  27. Dolin P, Ershler B (1940) Kinetics of processes on the platinum electrode. I. The kinetics of the ionization of hydrogen adsorbed on a platinum electrode. Acta Physicochim. URSS 13:747–779

    CAS  Google Scholar 

  28. Dolin P, Ershler B, Frumkin A (1940) Kinetics of processes on the platinum electrode. II. The rate of discharge of H-ions and the rate of the overall process of hydrogen evolution on platinum. Acta Physicochim URSS 13:779–792

    CAS  Google Scholar 

  29. Frumkin A (1926) Über die Beeinflussung der Adsorption von Neutralmolekülen durch ein elektrisches. Feld Z Phys 35:792–802

    Article  CAS  Google Scholar 

  30. Levi MD, Aurbach D (1999) Frumkin intercalation isotherm – a tool for the description of lithium insertion into host materials: a review. Electrochim Acta 45:167–185

    Article  CAS  Google Scholar 

  31. Frumkin A, Donde A (1927) Über hydrolitische Adsorption an Platinmohr und Kohle. Ber A 60:1816–1820

    Google Scholar 

  32. Bach-Nikolaewa N, Frumkin A (1928) Über die Abhängigkeit der Stabilität von Kohlesuspensionen von der Gasbeladung und der Zusammensetzung der Lösung. Kolloid-Z 46:89–90

    Article  Google Scholar 

  33. Burschtein R, Frumkin A (1929) Über den Zusammenhang zwischen der Gasbeladung und der Adsorption von Elektrolyten durch aktivierte Kohle. II Z phys Chem A 141:158–166

    Article  Google Scholar 

  34. Burschtein R, Frumkin A (1929) Über das Verhalten von entgaster aktivierter Kohle gegen Elektrolyten. Z phys Chem A 141:219–220

    Article  Google Scholar 

  35. Bruns В, Frumkin A (1929) Über den Zusammenhang zwischen der Gasbeladung und der Adsorption von Elektrolyten durch aktivierte Kohle. I Z phys Chem A 141:141–157

    Article  CAS  Google Scholar 

  36. Frumkin AN (1932) Fiziko-khimicheskie osnovy teorii flotatsii (Physico-chemical basis of flotation theory). Izd AN SSSR, Leningrad, 12p (in Russian)

  37. Cahoon NC (1947) Electrolyte equilibria in relation to dry cell performance. Trans Electrochem Soc 92:159–172

    Article  Google Scholar 

  38. Wadsley AD, Walkley A (1949) Some observations on the potential of the manganese dioxide electrode. Trans Electrochem Soc 95:11–20

    Article  CAS  Google Scholar 

  39. Kabanov BN (1936) Perenapryazhenie vodoroda pri bol’shoi plotnosti toka (Hydrogen overvoltage at high current density). Zh fiz khimii 8:486–491 (in Russian)

    CAS  Google Scholar 

  40. Iofa Z (1945) Hydrogen overvoltage on lead cathode in concentrated solutions of acids. Zh fiz khimii 16:117–124 (in Russian)

    Google Scholar 

  41. Kabanov B, Jofa S (1938) The hydrogen overvoltage on lead and the capacity of the lead electrode. Acta Physicochim URSS 10:617–629

    Google Scholar 

  42. Kabanov B, Filippov S, Vanyukova L, Iofa Z, Prokofiev A (1939) Perenapryazhenie vodoroda na svintse [Hydrogen overvoltage on lead]. Zh fiz khimii 13:341–349 (in Russian)

    CAS  Google Scholar 

  43. Kabanov BN (1941) Die crystallisation des Bleisulfats und di dicke die passivirienden schicht auf Blei. [The crystallization of lead sulfate and the thickness of the passivating layer on lead.]. Comp Rend Acad Sci l’USSR 31:581–584

    CAS  Google Scholar 

  44. Iofa ZA, Moiseeva NB, Mirlina SY, Krymakova E (1948) Ob obrazovanii perekisi vodoroda v shelochno-ugol’nom elemente s vozdushnoi depolyarizatsiei [On the formation of hydrogen peroxide in an alkaline-carbon cell with air depolarization]. Zh prikl khimii 21:321–324 (in Russian)

  45. Iofa ZA, Mirlina SY, Moiseeva NB (1949) Izuchenie protsessov, protekayushikh na tsinkovom electrode v elementakh s shelochnym elektrolitom [The study of processes at the zinc electrode in cells with alkaline electrolyte]. Zh prikl Khim 22:983–992 (in Russian)

  46. Iofa ZA, Komlev LB, Bagotsky VS (1961) Perenapryazhenie vodoroda na tsinkovom electrode v shelochnykh rastvorakh [Overvoltage of hydrogen on a zinc electrode in alkaline solutions.]. Zh fiz khimii 35:1571–1577 (in Russian)

  47. Kiseleva IG, Kabanov BN (1958) Ob obrazovanii I elektrokhimicheskikh svoystvakh kristallicheskikh modifikatsiy dvuokisi svintsa [On the formation and electrochemical properties of crystalline modifications of lead dioxide.]. Dokl AN SSSR Chem 122:1042–1045 (in Russian)

    CAS  Google Scholar 

  48. Astakhov II, Weisberg ES, Kabanov BN (1964) Anodnaya korroziya svintsa v sernoy kislote [Anodic corrosion of lead in sulfuric acid.]. Dokl AN SSSR Chem 154:1414–1416 (in Russian)

    CAS  Google Scholar 

  49. Kabanov В, Burstein R, Frumkin A (1947) Kinetics of electrode processes on the iron electrode. Discuss Faraday Soc 1:259–269

    Article  Google Scholar 

  50. Kashcheev VD, Kabanov BN, Leykis DI (1962) Anodnaya aktivatsiya zheleza (Anodic activation of iron.). Dokl AN SSSR Chem 147:143–145 (in Russian)

    CAS  Google Scholar 

  51. Popova TI, Bagotsky VS, Kabanov BN (1960) Anodnaya passivatsiya tsinka v shchelochnykh rastvorakh [Anodic passivation of zinc in alkaline solutions.]. Dokl AN SSSR Chem 132:639–642 (in Russian)

    CAS  Google Scholar 

  52. Kabanov BN, Kokoulina DV (1958) O mekhanizme anodnogo pastvoreniya magniya [On the mechanism of anodic dissolution of magnesium.]. Dokl AN SSSR Chem 120:558–561 (in Russian)

    CAS  Google Scholar 

  53. Frumkin A, Aladjalova N (1944) Theory of hydrogen ion discharge. III. Palladium. Acta Physicochim URSS 19:1–35

    CAS  Google Scholar 

  54. Perminov PS, Orlov AA, Frumkin AN (1952) Vliyanie davleniya na rastvorenie vodoroda v beta-faze sistemy palladii-vodorod [The effect of pressure on the dissolution of hydrogen in the β-phase of the palladium-hydrogen system.]. Dokl AN SSSR 84:749–752 (in Russian)

  55. Fedorova AI, Frumkin AN (1953) Issledovanie sistemy palladii-vodorod elektrokhimicheskim metodom [Investigation of the palladium-hydrogen system by an electrochemical method.]. Zh fiz khimii 27:247–260 (in Russian)

  56. Petrii OA, Kovrigina IV, Vasina SYa (1989) Electrochemistry of hydrogen-containing intermetallic compounds. Mater Chem Phys 220:51–76

  57. Petrii OA, Vasina SYa, Korobov II (1996) Electrochemistry of hydride-forming intermetallic compounds and alloys. Russ Chem Rev 65:181–195

  58. Ershler BV, Tyurikov GS, Smirnova AD (1940) O mekhanizme deistviya okisnonikelevogo elektroda I (On the mechanism of the action of nickel oxide electrode. I.). Zh fiz khimii 14:985–988 (in Russian)

    CAS  Google Scholar 

  59. Kuchinsky EM, Ershler BV (1946) O mekhanizme deistviya okisnonikelevogo elektroda [On the mechanism of action of the nickel oxide electrode I]. Zh fiz khimii 20:539–546 (in Russian)

    Google Scholar 

  60. Kabanov BN, Leykis DI, Kiseleva IG, Astakhov II, Aleksandrova DP (1962) Katodnoe vnedrenie shelochnykh metallov v electrody v vodnykh rastvorakh (Cathodic insertion of the alkali metals into electrodes in aqueous solutions). Dokl AN SSSR 144:1085–1088 (in Russian)

    CAS  Google Scholar 

  61. Spiridonov PM (1936) Gal’vanicheskii gazovyi kislorodno-vodorodnyi element [Galvanic gas oxygen-hydrogen cell.] Certificate of invention of the USSR No. 48658 (in Russian).

  62. Spiridonov PM (1950) Shchelochnoy zhelezo-ugol’nyi element [Alkali iron-carbon cell.] Certificate of invention of the USSR No. 89942 (in Russian).

  63. Burstein R, Frumkin A (1932) The sorption of hydrogen by platinized charcoal. Trans Faraday Soc 28:273–275

    Article  CAS  Google Scholar 

  64. Frumkin AN (1949) O raspredelenii korrosionnogo processa po dline trubki [On the distribution of the corrosion process along the length of a tube.] Zh fiz khimii 23:1477–1482 (in Russian)

  65. Bagotsky VS, Yablokova IE (1953) Mekhanizm elektrokhimicheskogo vosstanovleniya kisloroda i perekisi vodoroda na rtutnom electrode [Mechanism of electrochemical reduction of oxygen and hydrogen peroxide on a mercury electrode.]. Zh fiz khimii 27:1663–1675 (in Russian)

  66. Bagotsky VS, Motov DL (1950) Obratimyi kislorodnyi elektrod na rtuti v shelochnom rstvore i mekhanizm katodnogo vosstanovleniya kisloroda [The reversible oxygen electrode at mercury in alkaline solution and the mechanism of oxygen cathodic reduction.]. Dokl AN SSSR 71:501–504 (in Russian)

  67. Shteinberg GV, Bagotsky VS (1957) Nekotorye osobennosti vosstanovleniya khromovoi kisloty na uglerodnom katode [Some peculiarities of chromic acid reduction at a carbon cathode.]. Dokl AN SSSR 115:568–571 (in Russian)

    CAS  Google Scholar 

  68. Mendzheritskii EA, Bagotsky VS (1959) Usloviya ravnovesiya na tsinkovom electrode v nfsyshennykh tsinkatnykh shelochnykh rastvorakh [The equilibrium conditions at a zinc electrode in zincate saturated alkaline solutions.]. Dokl AN SSSR 128:575–577 (in Russian)

    CAS  Google Scholar 

  69. Mendzheritskii EA, Bagotsky VS (1962) Kinetika tormozheniya obrazovaniya novoi fazy pri katodnov vosstanovlenii nekotorykh oksidov metallov [Kinetics of inhibition of the formation of a new phase during cathode reduction of some metal oxides.]. Dokl AN SSSR 142:127–130 (in Russian)

    CAS  Google Scholar 

  70. Mendzheritsky EA, Bagotsky VS (1966) Katodnoe vosstanovlenie rtutno-oksidnogo elektroda [Cathodic reduction of a mercury oxide electrode.]. Elektrokhimiya 2:1312–1317 (in Russian)

    Google Scholar 

  71. Oshe AI, Bagotsky VS (1961) O mekhanizme katodnogo vosstanovleniya fazovykh sloev oksida tsinka na tsinkovom electrode [On the mechanism of cathodic reduction of zinc oxide phase layers at a zinc electrode.]. Zh fiz khimii 35:1641–1642 (in Russian)

  72. Oshe AI, Astakhov II, ZYa N, Reznik IF, Bagotsky VS (1961) Izmeneniya struktury otritsatel’nogo elektroda serebryano-tsinkovogo akkumulyatora v usloviyakh funktsionirovaniya [Changes in the structure of the negative electrode of a silver-zinc battery under operation conditions.]. Zh prikl khimii 34:2254–2260 (in Russian)

  73. Kazakevich GZ, Yablokova IE, Bagotsky VS (1966) Povedenie serebra v otkjchi pri ego polyarizatsii asimmetrichnym peremennym tokom [Behavior of silver in alkali when it is polarized by an asymmetric alternating current.]. Elektrokhimiya 2:932–936 (In Russian)

    Google Scholar 

  74. Kazakevich GZ, Yablokova IE, Bagotskii VS (1967) Activation of silver oxide electrodes. Soviet Electrochem 3:104–106

    CAS  Google Scholar 

  75. Chizmadzhev YuA, Markin VS, Tarasevich MR, Chirkov YuG (1971) Makrokinetika protsessov v poristykh sredakh [Macrokinetics of processes in porous media.] Nauka, Moscow (in Russian), 364 p.

  76. Burshtein RC, Markin VS, Pshenichnikov AG, Chismadgev YA, Chirkov YG (1964) The relationship between structure and electrochemical properties of porous gas electrodes. Electrochim Acta 9(6):773–787

    Article  CAS  Google Scholar 

  77. Kuznetsov AM, Petrii OA, Tsirlina GA (2008) Veniamin (Benjamin) Grigor’evich Levich (1917–1987). Russ J Electrochem 44:360–367

    Article  CAS  Google Scholar 

  78. Bagotskii VS, Nekrasov LN, Shumilova NA (1965) Electrochemical reduction of oxygen. Russ Chem Rev 34:717–729

    Article  Google Scholar 

  79. Shumilova NA, Bagotzky VS (1968) Oxygen ionization on nickel in alkaline solutions. Electrochim Acta 13:285–293

    Article  CAS  Google Scholar 

  80. Bagotzky VS, Shumilova NA, Khrushcheva EI (1976) Electrochemical oxygen reduction on oxide catalysts. Electrochim Acta 21:919–924

    Article  CAS  Google Scholar 

  81. Bagotzky VS, Tarasevich MR, Radyushkina KA, Levina OA, Andrusyova SI (1977/78) Electrocatalysis of the oxygen reduction process on metal chelates in acid electrolyte. J Power Sources 2:233–240

    Article  Google Scholar 

  82. Tarasevich MR, Shumilova NA, Burshtein. (1964) Investigation of the adsorption and ionization of oxygen by the method of triangular voltage pulses - Report 1. Adsorption and desorption of oxygen on a silver electrode during its anode and cathode polarization. Bull Acad Sci USSR Chem 13:14–20.

  83. Tarasevich MR, Shumilova NA, Burshtein RK (1966) Investigation of the adsorption and ionization of oxygen by the method of triangular voltage pulses Communication 2. Ionization of molecular oxygen on silver in alkaline solution. Bull Acad Sci USSR Chem 15:24–27

    Article  Google Scholar 

  84. Podlovchenko BI, Iofa ZA (1964) Khemosorbtsiya etanola i atsetal’degida na platine i vliyanie na nee anionov elektrolita fona (Ethanol and acetaldehyde chemosorption on platinum, and the effect of supporting electrolyte anions). Zh fiz khimii 38:211–214 (in Russian)

  85. Petry OA, Podlovchenko BI, Frumkin AN, Hira L (1965) The behaviour of platinized platinum and platinum-ruthenium electrodes in methanol solutions. J Electroanal Chem 10:253–269

    CAS  Google Scholar 

  86. Podlovchenko BI, Petry OA, Frumkin AN, Hira L (1966) The behaviour of a platinized platinum electrode in solutions of alcohols containing more than one carbon atom, aldehydes, and formic acid. J Electroanal Chem 11:12–25

    CAS  Google Scholar 

  87. Schlygin A, Frumkin A, Medwedowsky W (1936) Über die Platinelektrode. II. Die Adsorption-seigenschaften der Pt-Elektrode. Acta Physicochim URSS 4:911–928

    Google Scholar 

  88. Ershler B, Proskurnin M (1937) The capacity of a bright platinum electrode in various electrolytes and its dependence on the treatment of the electrode. Acta Physicochim URSS 6:195–204

    CAS  Google Scholar 

  89. Erschler В, Frumkin A (1939) Surface chemistry of the platinum electrode. Trans Faraday Soc 35:464–467

    Article  Google Scholar 

  90. Bagotzky VS, Vassiliev YB, Khazova OA (1977) Generalized scheme of chemisorption, electrooxidation and electroreduction of simple organic compounds on platinum group metals. J Electroanal Chem 81:229–238

    Article  Google Scholar 

  91. Bagotzky VS, Vassilyev YB (1967) Mechanism of electro-oxidation of methanol on the platinum electrode. Electrochim Acta 12:1323–1343

    Article  Google Scholar 

  92. Petrii OA (2008) Pt-Ru electrocatalysts for fuel cells: a representative review. J Solid State Electrochem 12:609–642

    Article  CAS  Google Scholar 

  93. Bagotzky VS, Vassiliev YB, Khazova OA, Sedova SS (1971) Adsorption and anodic oxidation of methanol on iridium and rhodium electrodes. Electrochim Acta 16:913–938

    Article  Google Scholar 

  94. Bagotzky VS, Skundin AM, Tuseeva EK (1976) Adsorption of hydrogen and oxygen and oxidation of methanol on ruthenium electrodes. Electrochim Acta 21:29–36

    Article  CAS  Google Scholar 

  95. Vassiliev YB, Bagotzky VS, Osetrova NV, Mikhailova AA (1979) The mechanism of tin-promoted electrochemical oxidation of organic substances on platinum. J Electroanal Chem 97:63–76

    Article  Google Scholar 

  96. Mayorova NA, Khazova OA, Bagotzky VS (1998) Methanol electrooxidation on platinum mesh electrodes bonded to solid polymer electrolytes. J Solid State Electrochem 2(4):262–265

    Article  CAS  Google Scholar 

  97. Bagotzky VS (1993) Analysis of electrochemical impedance spectroscopy data for lithium electrodes and lithium batteries. J Electroanal Chem 357:251–259

    Article  CAS  Google Scholar 

  98. Baturina OA, Kanevsky LS, Bagotzky VS, Volod’ko VV, Karasev AL, Revina AA (1991) Influence of macrocyclic compounds on the electrochemical reduction of thionyl chloride at glassy carbon cathodes. J Power Sources 36:127–136

    Article  CAS  Google Scholar 

  99. Bagotzky VS, Volfkovich YM, Kanevsky LS, Skundin AM, Broussely M, Chenebault P, Caillaud T (1995) Power Sources. Ch. 27. In: Attewell A, Keley T (eds) Changes of the porous structure of carbon cathodes during the discharge of Li–SOCl2 cells

    Google Scholar 

  100. Kedrinskii IA, Dmitrenko VE, Povarov YM, Grudyanov II (1983) Khimicheskie istochniki toka s litievym elektrodom [Power sources with lithium electrodes]. Izd Krasnoyarskogo Universiteta (Krasnoyarsk Univ Publ), Krasnoyarsk, 247 p (in Russian)

  101. Makhonina EV, Pervov VS, Dubasova VS (2004) Oxide materials as positive electrodes of lithium-ion batteries. Russ Chem Rev 73:991–1001

    Article  CAS  Google Scholar 

  102. Justi PE, Winsel AW (1962) Kalte Verbrennung (Fuel Cells), Franz Steiner Verlag GMBH, Wiesbaden. In: Russian Translation, vol 1964. Toplivnye element. Mir, Moscow, p 480

    Google Scholar 

  103. Vielstich W (1965) Brennstoffelemente. Moderne Verfahren zur elektrochemischen Energiegewinnung, Verlag Chemie GmbH, Weinheim/Bergstr. 1965. 388 S. Russian translation (1968) Toplivnye element. Mir, Moscow, 420 p.

Download references

Acknowledgments

The authors are grateful to Prof. Mikhail Z. Iofa (Skobeltsyn Institute of Nuclear Physics, Moscow University) and Natalya P. Kargina (Moscow University Archive) for provision of many informative documents. The outstanding help of Prof. Stephen Fletcher is especially noted with appreciation.

Funding

This work was financially supported by the Ministry of Science and Higher Education of the Russian Federation. GTs acknowledges partial support from M.V. Lomonosov Moscow State University Program of Development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Galina A. Tsirlina.

Additional information

Dedication

We dedicate this article to the memory of Alexander Naumovich Frumkin (1895–1976) and Vladimir Sergeevich Bagotsky (1920–2012). We also celebrate Bagotsky’s centenary in 2020.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The first author of this article has spent the majority of his scientific career in power sources research. In contrast, the second author has always avoided this topic. Nevertheless, they share an interest in the history of electrochemistry as a professional hobby.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skundin, A.M., Tsirlina, G.A. Contributions of A.N. Frumkin and the Frumkin School to power sources research. J Solid State Electrochem 25, 373–385 (2021). https://doi.org/10.1007/s10008-020-04860-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04860-3

Navigation