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Coupling biology to electrochemistry—future trends and needs
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The coupling of biological entities with electrodes has already
quite some history and has reached a status which is not only
based on phenomenological descriptions. Nowadays, we are
able to effectively couple redox centres within protein mole-
cules to electrochemical transducers. This allows the transduc-
tion of a biochemical reaction into an electrode signal with
applications mainly in sensing and bioenergetics [1–8].
However, in most cases, this coupling is not direct, and shuttle
molecules or side products of the reaction are used. But also
for the direct coupling, significant progress has been made,
and several enzymes and redox proteins can be addressed
directly by electrodes [8–13]. The understanding of the func-
tioning of developed systems is, however, in its infancy.
Charge and electrostatic interactions have been mostly stud-
ied, and for small dipole molecules such as cytochrome c, the
situation can be well described [14]. There is a lack of under-
standing for more complex enzyme molecules which brings a
lot of trial and error into research.

The last decade was characterised by an explosion of new
materials, which can be used to immobilise protein molecules
to electrode surfaces. Particularly, material in the nanoscale
appears as a valuable tool since the size dimensions which are
similar to biomolecules bring new features and very often avoid
inactivation processes occurring by non-biological materials in
the macroscale [15–21]. Unfortunately, the literature is full of
systems with several mixed materials and biomolecules, but the
role of every single component is often not clear.We needmore
fundamental studies on the interaction of one nanomaterial with
biomolecules. Here, one can not only exploit variations in the
nanomaterial structure or surface, but we need to exploit more
the potential of protein engineering. The recombinant

preparation of proteins and mutants of the native molecule al-
lows much better to elucidate which part of the protein surface
is responsible for the surface interaction. However, also with
mutants, care has to be taken that the modified protein has still
the same 3D structure as the native biomolecule—a fact which
is not always controlled in mutational studies.

For several nanomaterials, different shapes can be achieved
by innovative preparation protocols. This is on the one hand a
large “playground” to work on, and on the other hand, we do
not understand which structural parameters are important for a
productive interaction with a given redox biomolecule.

Thus, we need more collaborations between people from
biochemical research, materials chemistry and electrochemi-
cal sciences. Here, biochemistry is not only acting as servant
for electrochemistry, but one can study functional properties
by electrochemistry, and thus, new information can be gained
about biomolecules. Thus, electrochemistry will also develop
as a tool for studying biochemical systems.

A special group of materials are polymers which have been
used from early days of biosensor research as an immobilisation
matrix [22]. Another role of polymers can be, however, exem-
plified with many enzymes and redox polymers with embedded
redox centres. Here, studies show that biomolecular interaction
with the polymer is influenced by the ligand shell of the metal
centers and the redox potential but also the structural
flexibility—mainly tested by variations in the linker length be-
tween the metal complex and the polymer backbone [23–25].
This allows the construction of defined signal chains from ana-
lyte molecules converted at the enzyme towards a current flow
at the electrode. For other groups of polymers, we have much
less knowledge. For example, conducting polymers seem also to
be very attractivematerials on electrodes since they can transport
electrons through the polymeric chains [26–29]. However, only
few systems with clear electron exchange between a biocatalyst
and a conducting polymer have been demonstrated. The condi-
tions for an effective reaction between an enzyme and a
conducting polymer cannot simply be foreseen yet.

Polymers seem also valuable in combining different biomol-
ecules on one electrode and thus, creating supramolecular
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structures. This originates from the idea to combine various
features of different molecules for a new functionality of the
whole system. For the arrangement of molecules, bioaffinity
binding, covalent coupling, electrostatic layer-by-layer deposi-
tion or entrapment systems with different biomolecules and
redox polymers can be used [30–34]. Here, one can expect
significant progress since the work of enzymes in a cooperative,
sequential, recycling or competitive mode follows very much
biological examples. The systematic arrangement of biomole-
cules allows the creation of defined pathways with low diffu-
sional distances and high conversion efficiencies. We are only
at the beginning of development with some recent examples
coupling enzyme reactions to photoactive protein complexes
[35] or switching between different enzymes [36].

This points to another actual research direction: the combi-
nation of light-induced charge carrier generation and biocatal-
ysis [37–39]. One could argue on the complexity of such
systems, but when light activation is applied, electrons from
oxidation processes can be collected at much lower electrode
potential than the redox potential of the enzyme. And for
reduction processes, electrons can be supplied at much higher
potential. This is interesting from the energetic point of view,
and thus, development will grow in this area. In addition, the
light can be used as tool for multiplexing.

Another field of electrochemical research has seen some
dramatic development in the last decade. It is based on the
coupling of even more complex biological structures to
electrodes—whole cells. Here, one needs to realise that only
little can be transferred from isolated biomolecules to living
structures on the surface. Application seems attractive in
wastewater treatments and thus bioenergetics, but also in
sensing—particularly for environmentally relevant substances
[40–43]. The living character has to be taken in consideration
by conditions and the supply of nutrients, but it also allows
much better stability of a biofilm on an electrode compared
with an enzyme layer. However, there is a lack in understand-
ing of such systems, and thus, again collaboration of experts
from different fields such as microbiology, bioprocess tech-
nology, biochemistry and electrochemistry is necessary.

The deepening of understanding biomolecular interactions
with surfaces and materials will also help to come to more
systems which will find application in an everyday life situa-
tion. Presently, this can be mainly seen in simple detection
systems which can be coupled to digital read out units and
which are directed to biomarkers, toxins, but also viruses and
bacteria. But there is also room for other fields such as syn-
thesis of special chemicals and energy conversion.
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