Skip to main content
Log in

Sensitive voltammetric determination of bromate by using ion-exchange property of a Sn(II)-clinoptilolite-modified carbon paste electrode

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A modified carbon paste electrode with Sn(II)-exchanged clinoptilolite nanoparticles (CNP-Sn(II)-CPE) showed voltammetric current (in cyclic voltammetry (CV)) for Sn(II)/Sn(IV) in sulfuric acid electrolyte (pH 2). The peak current was decreased when bromate was added to the solution. Hence, this decrease was used for indirect voltammetric determination of bromate. In designed experiments using response surface methodology (RSM) approach in square-wave voltammetry (SqW), strong acidic pH values (pH 1.8–2.5) caused an increased SqW voltammetric response, because such pH values bring sufficient Sn(II) as the electroactive species at the electrode surface via ion-exchange process. The optimal variables obtained are sulfuric acid as supporting electrolyte at pH 1.80, modifier% at 25, amplitude at 498.4 mV, step potential at 5.4 mV, and frequency at 25 Hz. The peak current of Sn(II)/Sn(IV) redox pair was inversely proportionate to the concentration of bromate. Hence, ΔI (difference in peak current in the absence and presence of bromate) was proportionally increased with increasing the concentration of bromate in the range of 5.00 to 100.00 μmol L−1 with a detection limit of 0.06 μmol L−1 bromate. The effect of some strong oxidizing agents was studied, and the results showed that when such agents are present at levels of 2.5 to 5 times greater than the bromate in the solution, they can cause a maximum error of 3% in the determination of bromate in sulfuric acid electrolyte at pH 2.5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pfaff J, Brockhoff C, O’Dell J (1991) The determination of inorganic anionsin water by ion chromatography. Method 300.0 revised. US Environmental Protection Agency, Cincinnati

    Google Scholar 

  2. Thomas H, Matthew J, Keith W (1997) A review of the effects of bromate on aquatic organisms and toxicity of bromate to oyster (Crassostreagigas) embryos. Ecotoxicol Environ Saf 38:238–243

    Article  Google Scholar 

  3. Legube B, Bourbigot M, Bruchet A, Deguin A, Montiel A, Matia L (1997) Bromide/bromate survey on different European water utilities. In: International workshop on bromate and water treatment, Paris, France 22: 135–139

  4. Michalski R, Olsinska U (1996) The determination of bromates in water by means of ion chromatography. Acta Chromatogr 6:127

    CAS  Google Scholar 

  5. Song R, Minear R, Westerhoff P, Amy G (1997) Modelling and risk analysis of bromate formation from ozonation of bromide-containing waters. Water Sci Technol 79:34/7–34/8

    Google Scholar 

  6. WHO (1993) Guidelines for drinking water quality, tables of guidelines values. WHO, Geneva

    Google Scholar 

  7. Yan Z, Zhang Z, Liu Z, Chen J (2016) Chemiluminescence determination of potassium bromate in flour based on flow injection analysis. Food Chem 190:21–24

    Article  CAS  Google Scholar 

  8. Mario M, Maria T Fernandez A, Jose M, Costa F, Pereiro R, Sanz Medel A (2013) Room temperature phosphorimetric determination of bromate in flour based on energy transfer. Talanta 116:231–236

    Article  CAS  Google Scholar 

  9. Ketai W, Huitao L, Jian H, Xingguo C, Zhide H (2000) Determination of bromate in bread additives and flours by flow injection analysis. Food Chem 4:509–514

    Article  Google Scholar 

  10. Inoue Y, Sakai T, Kumagai H, Hanaoka Y (1997) High selective determination of bromate in ozonized water by using ion chromatography with postcolumn derivatization equipped with reagent preparation device. Anal Chim Acta 346(3):299–305

    Article  CAS  Google Scholar 

  11. Kolpakova NA, Oskina YA, Sabitova ZK (2018) Determination of Rh(III) by stripping voltammetry on a graphite electrode modified with lead. J Solid State Electrochem 22(6):1933–1939

    Article  CAS  Google Scholar 

  12. Ehsani A, Hadi M, Kowsari E, Doostikhah S, Torabian J (2017) Electrocatalytic oxidation of ethanol on the surface of the POAP/ phosphoric acid-doped ionic liquid-functionalized graphene oxide nanocomposite film. Iran J Catal 7:187–192

    CAS  Google Scholar 

  13. Vedhi C, Selvanathan C, Arumugam P, Manisankar P (2009) Electrochemical sensors of heavy metals using novel polymer-modified glassy carbon electrodes. Ionics 15(3):377–383

    Article  CAS  Google Scholar 

  14. Nobahari MH, Golikand AN, Bagherzadeh M (2017) Synthesis and characterization of Pt3Co bimetallic nanoparticles supported on MWCNT as an electrocatalyst for methanol oxidation. Iran J Catal 7:327–335

    CAS  Google Scholar 

  15. Leniart A, Brycht M, Burnat B, Skrzypek S (2018) An application of a glassy carbon electrode and a glassy carbon electrode modified with multi-walled carbon nanotubes in electroanalytical determination of oxycarboxin. Ionics 24(7):2111–2121

    Article  CAS  Google Scholar 

  16. Noroozifar M, Khorasani-Motlagh M, Bemanadi Parizi M, Akbari R (2013) Highly sensitive electrochemical detection of dopamine and uric acid on a novel carbon nanotube-modified ionic liquid-nanozeolite paste electrode. Ionics 19(9):1317–1327

    Article  CAS  Google Scholar 

  17. Abdullah Mirzaie R, Hamedi F (2015) Introducing Pt/ZnO as a new non carbon substrate electro catalyst for oxygen reduction reaction at low temperature acidic fuel cells. Iran J Catal 5:275–283

    Google Scholar 

  18. Taei M, Jamshidi M (2014) Highly selective determination of ascorbic acid, epinephrine, and uric acid by differential pulse voltammetry using poly(Adizol black B)-modified glassy carbon electrode. J Solid State Electrochem 18(3):673–683

    Article  CAS  Google Scholar 

  19. Portales MV, Lazo Fraga AR, Díaz García AM, García-Zaldívar O, Barranco AP, Aguilar Frutis MA (2018) Cyclic voltammetry and impedance spectroscopy analysis for graphene-modified solid-state electrode transducers. J Solid State Electrochem 22(2):471–478

    Article  CAS  Google Scholar 

  20. Gligor D, Muresan LM, Dumitru A, Popescu IC (2007) Electrochemical behavior of carbon paste electrodes modified with methylene green immobilized on two different X type zeolites. J Appl Electrochem 37(2):261–267

    Article  CAS  Google Scholar 

  21. Mehretie S, Losada J, Tessema M, Admassie SH, Solomon TH, Perez Pariente J, Díaz I (2012) Stripping voltammetric determination of pyridine-2-aldoximemethochloride at the iron(III) doped zeolite modified glassy carbon electrode. Analyst 137(23):5625–5631

    Article  CAS  PubMed  Google Scholar 

  22. Walcarius A (1999) Factors affecting the analytical applications of zeolite modified electrodes: indirect detection of nonelectroactive cations. Anal Chim Acta 388(1-2):79–91

    Article  CAS  Google Scholar 

  23. Basu M, Ghosh S (2016) Fuel cell applications of chemically synthesized zeolite modified electrode (ZME) as catalyst for alcohol electro-oxidation—a review. J Electroanal Chem 783:308–315

    Article  CAS  Google Scholar 

  24. Elizabete M, de Lima F, Claudia ALC, Gilberto J (2018) Modification of carbon paste electrodes with recrystallized zeolite for simultaneous quantification of thiram and carbendazim in food samples and an agricultural formulation. Electrochim Acta 259:66–76

    Article  CAS  Google Scholar 

  25. Walcarius A (1999) Electroanalytical applications of microporous zeolites and mesoporous (Organo)Silicas: recent trends. Electroanalysis 20:711–738

    Article  CAS  Google Scholar 

  26. Walcarius A (1999) Zeolite-modified electrodes in electroanalytical chemistry. Anal Chim Acta 384(1):1–16

    Article  CAS  Google Scholar 

  27. Walcarius A (1999) Zeolite-modified electrodes: analytical applications and prospects. Electroanalysis 8:971–976

    Article  Google Scholar 

  28. Rolison DR (1990) Zeolite-modified electrodes and electrode-modified zeolites. Chem Rev 90(5):867–878

    Article  CAS  Google Scholar 

  29. Muresan LM (2011) Zeolite-modified electrodes with analytical applications. Pure Appl Chem 83:325–343

    Article  CAS  Google Scholar 

  30. Doménech-Carbó A (2015) Theoretical scenarios for the electrochemistry of porous silicate-based materials: an overview. J Solid State Electrochem 19(7):1887–1903

    Article  CAS  Google Scholar 

  31. Bessel CA, Rolison DR (1997) Topological redox isomers: surface chemistry of zeolite-encapsulated co(salen) and [Fe(bpy)3]2+ complexes. J Phys Chem B 101(7):1148–1157

    Article  CAS  Google Scholar 

  32. Senaratne C, Zhang J, Baker MD, Bessel CA, Rolison DR (1996) Zeolite-modified electrodes: intra- versus extrazeolite electron transfer. J Phys Chem 100(14):5849–5862

    Article  CAS  Google Scholar 

  33. Walcarius A (2006) Zeolite-modified paraffin-impregnated graphite electrode. J Solid State Electrochem 10(7):469–478

    Article  CAS  Google Scholar 

  34. Walcarius A, Mariaulle P, Lamberts L (2003) Zeolite-modified solid carbon paste electrodes. J Solid State Electrochem 7(10):671–677

    Article  CAS  Google Scholar 

  35. Stephenson MJ, Attfield MP, Holmes SM, Dryfe Robert AW (2015) Electrochemically controlled ion exchange: proton ion exchange with sodium zeolite X and A. J Solid State Electrochem 19(7):1985–1992

    Article  CAS  Google Scholar 

  36. Mojović Z, Mudrinić T, Banković P, Jović-Jovičić N, Ivanović-Šašić A, Milutinović-Nikolić A, Jovanović D (2018) Oxygen reduction reaction on palladium-modified zeolite 13X. J Solid State Electrochem 22:31–40

    Article  CAS  Google Scholar 

  37. Baker MD, Senaratne C (1994) In: Lipkowski J, Ross PN (eds) The electrochemistry of novel materials. VCH Publishers, New York

    Google Scholar 

  38. Rolison DR (1994) The intersection of electrochemistry with zeolite science. Stud Surf Sci Catal 85:543–586

    Article  CAS  Google Scholar 

  39. Bedioui F (1995) Zeolite-encapsulated and clay-intercalated metal porphyrin, phthalocyanine and Schiff-base complexes as models for biomimetic oxidation catalysts: an overview. Coord Chem Rev 144:39–68

    Article  CAS  Google Scholar 

  40. Farhadi K, Bahram M, Shokatynia D, Salehiyan F (2008) Optimization of polymeric triiodide membrane electrode based on clozapine–triiodide ion-pair using experimental design. Talanta 76(2):320–326

    Article  CAS  PubMed  Google Scholar 

  41. Zhang C, Yang L, Rong F, Fu D, Gu Z (2012) Boron-doped diamond anodic oxidation of ethidium bromide: Process optimization by response surface methodology. Electrochim Acta 64:100–109

    Article  CAS  Google Scholar 

  42. Akiyama T, Yamanaka M, Date Y, Kubota H, Nagaoka MH, Kawasaki Y, Yamazaki T, Yomota C, Maitani T (2002) Specific determination of bromated in bread by ion chromatography with ICP-MS. J Food Hyg Soc Jpn 43(6):348–351

    Article  CAS  Google Scholar 

  43. Treacy MMJ, Higgins JB (2001) Collection of simulated XRD powder patterns for zeolites, 4th revised edn. Elsevier, Amsterdam, p 586

    Google Scholar 

  44. Scherrer P (1918) Bestimmung der Grösse und der inneren Struktur von Kolloidteilchenmittels Röntgensrahlen [Determination of the size and internal structure of colloidal particles using X-rays]. Math-Phys Kl German 1918:98–100

  45. Aghabeygi S, Kojoori R, Vakili Azad H (2016) Sonosynthesis, characterization and photocatalytic degradation property of nanoZnO/zeoliteA. Iran J Catal 6:275–279

    CAS  Google Scholar 

  46. Doula MK (2007) Synthesis of a clinoptilolite-Fe system with high Cu sorption capacity. Chemosphere 67(4):731–740

    Article  CAS  PubMed  Google Scholar 

  47. Handke M, Mozgawa W (1993) Vibrational spectroscopy of the amorphous silicates. Vib Spectrosc 5(1):75–84

    Article  CAS  Google Scholar 

  48. Handke M, Sitarz M, Mozgawa W (1998) Model of silicooxygen ring vibrations. J Mol Struct 450(1-3):229–238

    Article  CAS  Google Scholar 

  49. Arthur G, Frank JL (1983) Infrared spectrum of stannous oxide (SnO). J Mol Spectrosc 98:146–153

    Article  Google Scholar 

  50. Courtney TD, Chang C-C, Gorte RJ, Lobo RF, Fan W, Nikolakis V (2015) Effect of water treatment on Sn-BEA zeolite: origin of 960 cm−1 FTIR. Microporous Mesoporous Mater 210:69–76

    Article  CAS  Google Scholar 

  51. Doula M, Ioannou A, Dimirkou A (2002) Copper adsorption and Si, Al, Ca, Mg and Na release from clinoptilolite. J Colloid Interface Sci 245(2):237–250

    Article  CAS  PubMed  Google Scholar 

  52. Silverstein R, Bassler GC, Morill TC (1981) Spectromatic identification of organic compounds. Wiley, New York

    Google Scholar 

  53. Nezamzadeh-Ejhieh A, Shirzadi A (2014) Enhancement of the photocatalytic activity of ferrous oxide by doping onto the nano-clinoptilolite particles towards photodegradation of tetracycline. Chemosphere 107:136–144

    Article  CAS  PubMed  Google Scholar 

  54. Zabihi-Mobarakeh H, Nezamzadeh Ejhieh A (2015) Application of supported TiO2 onto Iranian clinoptilolite nanoparticles in the photodegradation of mixture of aniline and 2,4-dinitroaniline aqueous solution. J Ind Eng Chem 26:315–321

    Article  CAS  Google Scholar 

  55. Laviron E (1979) General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem 101(1):19–28

    Article  CAS  Google Scholar 

  56. Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New York, p 398

    Google Scholar 

  57. Azizi SN, Ghasemi S, Chiani E (2013) Nickel/mesoporous silica (SBA-15) modified electrode: an effective porous material for electrooxdation of methanol. Electrochim Acta 88:463–472

    Article  CAS  Google Scholar 

  58. Karimi Shervedani R, Bagherzadeh M (2009) Electrochemical impedance spectroscopy as a transduction method for electrochemical recognition of zirconium on gold electrode modified with hydroxamated self-assembled monolayer. Sensors Actuators B 139(2):657–664

    Article  CAS  Google Scholar 

  59. Anderson RL (1987) Practical statistics for analytical chemists. Van Nostrand Reinhold, New York

    Google Scholar 

  60. Ding L, Liu Y, Guo SX, Zhai J, Alan MB, Zhang J (2014) Phosphomolybdate@poly(diallyldimethylammonium chloride)-reduced graphene oxide modified electrode for highly efficient electrocatalytic reduction of bromated. J Electroanal Chem 727:69–77

    Article  CAS  Google Scholar 

  61. Papagianni GG, Stergiou DV, Armatas GS, Kanatzidis MG, Prodromidis MI (2012) Synthesis, characterization and performance of polyaniline-polyoxometalates (XM12, X=P, Si and M=Mo, W) composites as electrocatalysts of bromates. Sensors Actuators B 173:346–353

    Article  CAS  Google Scholar 

  62. Wang J, Serra B, Ly SY, Jose JL, Pingarron M (2001) Determination of micromolar bromate concentrations by adsorptive-catalytic stripping voltammetry of the molybdenum-3-methoxy-4-hydroxymandelic acid complex. Talanta 54(1):147–151

    Article  CAS  PubMed  Google Scholar 

  63. Li ZF, Chen JH, Pan DW, Tao WY, Nie LH, Yao ASZ (2006) Sensitive amperometric bromate sensor based on multi-walled carbon nanotubes/phosphomolybdic acid composite film. Electrochim Acta 51(20):4255–4261

    Article  CAS  Google Scholar 

  64. Mao R, Zhao X, Qu J (2014) Electrochemical reduction of bromate by a Pd modified carbon fiber electrode: kinetics and mechanism. Electrochim Acta 132:151–157

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Nezamzadeh-Ejhieh.

Electronic supplementary material

ESM 1

(DOCX 950 kb) The electronic supplementary materials are referred to individually in the main text, but were submitted all collated in a single file. If specific, individual reference to these is required, then please supply each as a separate file, ensuring that the naming conventions used are consistent (e.g., Online Resource #, Supplementary File #, Additional File #).Please use the seprate file that has been attached in revision version, as : Supplementary data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tamiji, T., Nezamzadeh-Ejhieh, A. Sensitive voltammetric determination of bromate by using ion-exchange property of a Sn(II)-clinoptilolite-modified carbon paste electrode. J Solid State Electrochem 23, 143–157 (2019). https://doi.org/10.1007/s10008-018-4119-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-018-4119-4

Keywords

Navigation