Skip to main content
Log in

Immobilization of glucose oxidase on ZnO nanorods decorated electrolyte-gated field effect transistor for glucose detection

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this paper, we report on growth of ZnO nanorods on the surface of gold interdigital electrodes and its implementation as a conductive n-type channel for the fabrication of a liquid-gated field effect transistor. Glucose oxidase was immobilized on the surface of the ZnO nanorods and the fabricated device was used as a four-electrode glucose biosensor. The resistance of the conductive channel was affected by addition of glucose. The applied bias voltage to the gate in the fabricated device affects the channel resistance in the same manner as the increase of enzymatic products during the glucose oxidation. Large effective area, good conductivity, and biocompatibility properties of ZnO nanorods are the key features in this highly sensitive and stable biosensor. Our measurements showed that the threshold voltage of transistor was about 0.75 V. The current increased in the presence of the glucose and exhibited a dynamic linear range with the logarithm of glucose concentration in the range between 0.01 and 5 mM. The detection limit was about 3.8 μM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Buerk DG (1995) Biosensors: theory and applications. CRC Press, p 232

  2. Fang A, Ng HT, Li SFY (2003) A high-performance glucose biosensor based on monomolecular layer of glucose oxidase covalently immobilized on indium–tin oxide surface. Biosens Bioelectron 19(1):43–49

    Article  CAS  Google Scholar 

  3. Luong JH, Male KB, Glennon JD (2008) Biosensor technology: technology push versus market pull. Biotechnol Adv 26(5):492–500

    Article  CAS  Google Scholar 

  4. Turner AP (1989) Current trends in biosensor research and development. Sensor Actuat B-Chem 17(3):433–450

    Article  CAS  Google Scholar 

  5. Turner AP (2013) Biosensors: sense and sensibility. Chem Soc Rev 42(8):3184–3196

    Article  CAS  Google Scholar 

  6. Goud JD, Raj PM, Liu J, Narayan R, Iyer M, Tummala R Electrochemical biosensors and microfluidics in organic system-on-package technology. In: 57th Electronic Components and Technology Conference (ECTC 2007), NV, USA, IEEE, pp 1550–1555. doi:10.1109/ECTC.2007.374001

  7. Tarabella G, Balducci AG, Coppedè N, Marasso S, D'Angelo P, Barbieri S, Cocuzza M, Colombo P, Sonvico F, Mosca R (2013) Liposome sensing and monitoring by organic electrochemical transistors integrated in microfluidics. Biochim Biophys Acta 1830(9):4374–4380

    Article  CAS  Google Scholar 

  8. Wanekaya AK, Chen W, Myung NV, Mulchandani A (2006) Nanowire-based electrochemical biosensors. Electroanalysis 18(6):533–550

    Article  CAS  Google Scholar 

  9. Errachid A, Zine N, Samitier J, Bausells J (2004) FET-based chemical sensor systems fabricated with standard technologies. Electroanalysis 16(22):1843–1851

    Article  CAS  Google Scholar 

  10. Mabeck JT, DeFranco JA, Bernards DA, Malliaras GG, Hocdé S, Chase CJ (2005) Microfluidic gating of an organic electrochemical transistor. Appl Phys Lett 87(1):013503

    Article  Google Scholar 

  11. Matsumoto A, Sato N, Sakata T, Kataoka K, Miyahara Y (2009) Glucose-sensitive field effect transistor using totally synthetic compounds. J Solid State Electrochem 13:165–170

    Article  CAS  Google Scholar 

  12. Park JW, Lee C, Jang J (2015) High-performance field-effect transistor-type glucose biosensor based on nanohybrids of carboxylated polypyrrole nanotube wrapped graphene sheet transducer. Sensor Actuat B-Chem 208:532–537

    Article  CAS  Google Scholar 

  13. Yoon H, Ko S, Jang J (2008) Field-effect-transistor sensor based on enzyme-functionalized polypyrrole nanotubes for glucose detection. J Phys Chem B 112(32):9992–9997

    Article  CAS  Google Scholar 

  14. Kwon OS, Hong T-J, Kim SK, Jeong J-H, Hahn J-S, Jang J (2010) Hsp90-functionalized polypyrrole nanotube FET sensor for anti-cancer agent detection. Biosens Bioelectron 25(6):1307–1312

    Article  CAS  Google Scholar 

  15. Fathollahzadeh M, Hosseini M, Haghighi B, Kolahdouz M, Fathipour M (2016) Fabrication of a liquid-gated enzyme field effect device for sensitive glucose detection. Anal Chim Acta 924:99–105

    Article  CAS  Google Scholar 

  16. Patolsky F, Lieber CM (2005) Nanowire nanosensors. Mater Today 8(4):20–28

    Article  CAS  Google Scholar 

  17. Tellabati NV, Waghadkar YB, Roy A, Shinde MD, Gosavi SW, Amalnerkar DP, Chauhan R (2015) Optical and photovoltaic properties of temperature-dependent synthesis of ZnO nanobelts, nanoplates, and nanorods. J Solid State Electrochem 19:2413–2420

    Article  CAS  Google Scholar 

  18. Soleimanzadeh R, Kolahdouz M, Charsooghi MA, Kolahdouz Z, Zhang K (2015) Highly selective and responsive ultra-violet detection using an improved phototransistor. Appl Phys Lett 106:231102

    Article  Google Scholar 

  19. Sun X, Kwok HS (1999) Optical properties of epitaxially grown zinc oxide films on sapphire by pulsed laser deposition. J Appl Phys 86(1):408–411

    Article  CAS  Google Scholar 

  20. Wang ZL (2004) Zinc oxide nanostructures: growth, properties and applications. J Phys Condens Matter 16(25):R829

    Article  CAS  Google Scholar 

  21. Fan Z, Lu JG Chemical sensing with ZnO nanowire. In: 5th IEEE Conference on Nanotechnology (IEEE-NANO 2005), Nagoya, Japan, IEEE, pp 403–406. doi:10.1109/NANO.2005.1500782

  22. Makarova MV, Macounová K, Krtil P (2006) The effect of cationic disorder on the optical and electrochemical behavior of nanocrystalline ZnO prepared from peroxide precursors. J Solid State Electrochem 10:320–328

    Article  CAS  Google Scholar 

  23. Narimani K, Nayeri FD, Kolahdouz M, Ebrahimi P (2016) Fabrication, modeling and simulation of high sensitivity capacitive humidity sensors based on ZnO nanorods. Sensor Actuat B-Chem 224:338–343

    Article  CAS  Google Scholar 

  24. Ali SMU, Nur O, Willander M, Danielsson B (2009) Glucose detection with a commercial MOSFET using a ZnO nanowires extended gate. IEEE Trans Nanotechnol 8(6):678–683

    Article  Google Scholar 

  25. Prasad BE, Kamath PV (2010) Electrochemical synthesis of ZnO coatings from water-isopropanol mixed baths: control over oriented crystallization. J Solid State Electrochem 14:2083–2088

    Article  CAS  Google Scholar 

  26. Liu Z, Ya J, E L (2010) Effects of substrates and seed layers on solution growing ZnO nanorods. J Solid State Electrochem 14:957–963

    Article  CAS  Google Scholar 

  27. Xu F, Lu Y, Xie Y, Liu Y (2010) Seed layer-free electrodeposition and characterization of vertically aligned ZnO nanorod array film. J Solid State Electrochem 14:63–70

    Article  Google Scholar 

  28. Prasad BE, Kamath PV, Ranganath S (2012) Electrodeposition of ZnO coatings from aqueous Zn(NO3)2 baths: effect of Zn concentration, deposition temperature, and time on orientation. J Solid State Electrochem 16:3715–3722

    Article  CAS  Google Scholar 

  29. Wu R, Chen X, Hu J (2012) Synthesis, characterization, and biosensing application of ZnO/SnO2 heterostructured nanomaterials. J Solid State Electrochem 16:1975–1982

    Article  CAS  Google Scholar 

  30. Karegar F, Kolahdouz M, Nayeri FD, Soleimanzadeh R, Hosseini M, Esfahani ZK, Zhang K (2015) Light-emitting n-ZnO nanotube/n+−GaAs heterostructures processed at low temperatures. IEEE Photon Technol Lett 27(13):1430–1433

    Article  CAS  Google Scholar 

  31. Norouzi M, Kolahdouz M, Ebrahimi P, Ganjian M, Soleimanzadeh R, Narimani K, Radamson H (2016) Thermoelectric energy harvesting using array of vertically aligned Al-doped ZnO nanorods. Thin Solid Films 619:41–47

    Article  CAS  Google Scholar 

  32. Nayeri FD, Kolahdouz M, Asl-Soleimani E, Mohajerzadeh S (2015) Low temperature carving of ZnO nanorods into nanotubes for dye-sensitized solar cell application. J Alloys Compd 633:359–365

    Article  Google Scholar 

  33. Haghighi B, Karimi B, Tavahodi M, Behzadneia H (2014) Electrochemical behavior of glucose oxidase immobilized on Pd-nanoparticles decorated ionic liquid derived fibrillated mesoporous carbon. Electroanalysis 26(9):2010–2016

    Article  CAS  Google Scholar 

  34. Yang K, She G-W, Wang H, Ou X-M, Zhang X-H, Lee C-S, Lee S-T (2009) ZnO nanotube arrays as biosensors for glucose. J Phys Chem C 113:20169–20172

    Article  CAS  Google Scholar 

  35. Lee C-T, Chiu Y-S, Ho S-C, Lee Y-J (2011) Investigation of a photoelectrochemical passivated ZnO-based glucose biosensor. Sensors 11:4648–4655

    Article  Google Scholar 

  36. Yano M, Koike K, Mukai K, Onaka T, Hirofuji Y, K-i O, Omatu S, Maemoto T, Sasa S (2014) Zinc oxide ion-sensitive field-effect transistors and biosensors. Phys Status Solidi A 211(9):2098–2104

    Article  CAS  Google Scholar 

  37. Ahmad R, Tripathy N, Parkc J-H, Hahn Y-B (2015) Comprehensive biosensor integrated with ZnO nanorods FETs array for selective detection of glucose, cholesterol and urea. Chem Commun 51:11968–11971

    Article  CAS  Google Scholar 

  38. Lee C-T, Chiu Y-S (2015) Photoelectrochemical passivated ZnO-based nanorod structured glucose biosensors using gate-recessed AlGaN/GaN ion-sensitive field-effect-transistors. Sensor Actuat B-Chem 210:756–761

    Article  CAS  Google Scholar 

  39. Qi J, Zhang H, Ji Z, Xu M, Zhang Y (2015) ZnO nano-array-based EGFET biosensor for glucose detection. Appl Phys A Mater Sci Process 119:807–811

    Article  CAS  Google Scholar 

  40. Du X, Li Y, Motley JR, Stickle WF, Herman GS (2016) Glucose sensing using functionalized amorphous In-Ga-Zn-O field effect transistors. ACS Appl Mater Interfaces 8(12):7631–7637

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Institute for Advanced Studies in Basic Science (IASBS, grant no. G2016IASBS119), University of Tehran (nanoelectronic center of excellence, department of electrical and computer engineering), and the Iran National Science Foundation (INSF, grant no. 92019263) for the financial supports.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Kolahdouz or B. Haghighi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fathollahzadeh, M., Hosseini, M., Norouzi, M. et al. Immobilization of glucose oxidase on ZnO nanorods decorated electrolyte-gated field effect transistor for glucose detection. J Solid State Electrochem 22, 61–67 (2018). https://doi.org/10.1007/s10008-017-3716-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3716-y

Keywords

Navigation