Skip to main content
Log in

Effect of the solvent on growth and properties of polyaniline-based composite films

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this study, we report on the electrosyntheses of polyaniline (PAni) and PAni/magnetite nanoparticle (PAni/Fe3O4-NP) composite films by a potentiodynamic method from water and ethanol solutions. The aim of the study is to evaluate the effect of the solvent on the electrochemical growth of these films. The growth cyclic voltammograms and the mass change variation (Δm), determined by the electrochemical quartz crystal microbalance technique, show that the polymer growth rate is lower in ethanol than in water (Δm in water is ca. 50% higher than in ethanol after 30 voltammetric cycles). As a consequence, the films grown from ethanol show a more compact and uniform morphology, as we observed with scanning electron microscopy. Furthermore, the formation of oxidation products is inhibited in ethanol. The PAni/Fe3O4-NP composite films electrosynthesized in ethanol showed enhanced electrochemical response than the composite films grown from water. This is attributed to the better dispersion of the nanoparticles in this solvent and consequently in the polymer matrix, as confirmed by the Δm value and the spectroscopic characterization. We conclude that electropolymerization from ethanol solution provides high-quality PAni and PAni/Fe3O4-NP composite films; the electrochemical and morphological properties of these films suggest that their use for corrosion protection is promising.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. MacDiarmid AG (2001) “Synthetic metals”: a novel role for organic polymers (Nobel Lecture). Angew Chem Int Ed 40:2581–2590

    Article  CAS  Google Scholar 

  2. Heeger AJ (2001) Nobel Lecture: semiconducting and metallic polymers: the fourth generation of polymeric materials. Rev Mod Phys 73:681–700

    Article  CAS  Google Scholar 

  3. Gospodinova N, Terlemezyan L (1998) Conducting polymers prepared by oxidative polymerization: polyaniline. Prog Polym Sci 23:1443–1484

    Article  CAS  Google Scholar 

  4. Ciric-Marjanovic G (2013) Recent advances in polyaniline research: polymerization mechanisms, structural aspects, properties and applications. Synth Met 177:1–47

    Article  CAS  Google Scholar 

  5. Inzelt G, Pineri M, Schultze JW, Vorotyntsev MA (2000) Electron and proton conducting polymers: recent developments and prospects. Electrochim Acta 45:2403–2421

    Article  CAS  Google Scholar 

  6. Tallman DE, Spinks G, Dominis A, Wallace GC (2002) Electroactive conducting polymers for corrosion control, part 1. General introduction and a review of non-ferrous alloys. J Solid State Electrochem 6:73–84

    Article  CAS  Google Scholar 

  7. Geniès EM, Boyle A, Lapkowski M, Tsintavis C (1990) Polyaniline: a historical survey. Synth Met 36:139–182

    Article  Google Scholar 

  8. Bláha M, Trchová M, Bober P, Morávková Z, Prokes J, Stejskal J (2017) Polyaniline: aniline oxidation with strong and weak oxidants under various acidity. Mater Chem Phys 194:206–218

    Article  Google Scholar 

  9. Sapurina IY, Shishov MA (2012) Oxidative polymerization of aniline: molecular synthesis of polyaniline and the formation of supramolecular structures. In: Gomes AS (ed) New polymers for special applications. InTech, Rijeka, pp 251–312

    Google Scholar 

  10. Santos JR Jr, Malmonge JA, Silva AJGC, Motheo AJ, Mascarenhas YP, Mattoso LHC (1995) Characteristics of polyaniline electropolymerized in camphor sulfonic acid. Synth Met 69:141–142

    Article  CAS  Google Scholar 

  11. Motheo AJ, Santo JR Jr, Venancio EC, Mattoso LHC (1998) Influence of different types of acidic dopant on the electrodeposition and properties of polyaniline films. Polymer 39:6977–6982

    Article  CAS  Google Scholar 

  12. Machado DS, Moraes SR, Motheo AJ (2006) Aspects of the chemical synthesis of PAni-DBSA and its properties. Mol Cryst Liq Cryst 447:215–222

    Article  Google Scholar 

  13. Gvozdenovic MM, Jugovic BZ, Stevanovic JS, Trisovic TL, Grgur BN (2011) Electrochemical polymerization of aniline. In: Schab-Balcerzak (ed) Electropolymerization. InTech, Rijeka, pp 77–96

    Google Scholar 

  14. Motheo AJ, Venancio EC, Mattoso LHC (1998) Polyaniline synthesized in propylene carbonate medium in the presence of di- and tri-chloroacetic acids. Part I. Polymer growth studies. Electrochim Acta 43:755–762

    Article  CAS  Google Scholar 

  15. Zhou S, Wu T, Kan J (2007) Effect of methanol on morphology of polyaniline. Eur Polym J 43:395–402

    Article  CAS  Google Scholar 

  16. Al-Ghamdi A, Al-Saigh ZY (2002) Surface and thermodynamic characterization of conducting polymers by inverse gas chromatography. I Polyaniline. J Chromatogr A 969:229–243

    Article  CAS  Google Scholar 

  17. Kan J, Lv R, Zhang S (2004) Effect of ethanol on properties of electrochemically synthesized polyaniline. Synth Met 145:37–42

    Article  CAS  Google Scholar 

  18. Anand J, Palaniappan S, Sathyanarayana DN (1998) Conducting polyaniline blends and composites. Prog Polym Sci 23:993–1018

    Article  CAS  Google Scholar 

  19. Pud A, Ogurtsov N, Korzhenko A, Shapoval G (2003) Some aspects of preparation methods and properties of polyaniline blends and composites with organic polymers. Prog Polym Sci 28:1701–1753

    Article  CAS  Google Scholar 

  20. Santos LHE, Branco JSC, Guimaraes IS, Motheo AJ (2015) Synthesis in phytic acid medium and application as anticorrosive coatings of polyaniline-based materials. Surf Coat Tech 275:26–31

    Article  CAS  Google Scholar 

  21. Moraes SR, Motheo AJ (2006) PAni-CMC: preparation, characterization and application to corrosion protection. Mol Cryst Liq Cryst 448:261–267

    Article  Google Scholar 

  22. Pagotto JF, Recio FJ, Motheo AJ, Herrasti P (2016) Multilayers of PAni/n-TiO2 and PAni on carbon steel and welded carbon steel for corrosion protection. Surf Coat Tech 289:23–28

    Article  CAS  Google Scholar 

  23. Aphesteguy JC, Jacobo SE (2004) Composite of polyaniline containing iron oxides. Phys B 354:224–227

    Article  Google Scholar 

  24. Kim JH, Fang FF, Choi HJ, Seo Y (2008) Magnetic composites of conducting polyaniline/nano-sized magnetite and their magnetorheology. Mater Lett 62:2897–2899

    Article  CAS  Google Scholar 

  25. Araujo ACV, Oliveira RJ, Alves S, Rodrigues AR, Machado FLA, Cabral FAO, Azevedo WM (2010) Synthesis, characterization and magnetic properties of polyaniline-magnetite nanocomposites. Synth Met 160:685–690

    Article  Google Scholar 

  26. Haldorai Y, Nguyen VH, Pham QL, Shim JJ (2011) Nanostructured materials with conducting and magnetic properties: preparation of magnetite/conducting copolymer hybrid nanocomposites by ultrasonic irradiation. Compos Interfaces 18:259–274

    Article  CAS  Google Scholar 

  27. Gu HB, Huang YD, Zhang X, Wang Q, Zhu JH, Shao L, Haldolaarachchige N, Young DP, Wei SY, Guo ZH (2012) Magnetoresistive polyaniline-magnetite nanocomposites with negative dielectrical properties. Polymer 53:801–809

    Article  CAS  Google Scholar 

  28. Janaky C, Kormanyos A, Visy C (2011) Magnetic hybrid modified electrodes, based on magnetite nanoparticle containing polyaniline and poly(3,4-ethylenedioxythiophene). J Solid State Electrochem 15:2351–2359

    Article  CAS  Google Scholar 

  29. Pailleret A, Hien NTL, Thanh DTM, Deslouis C (2007) Surface reactivity of polypyrrole/iron oxide nanoparticles: electrochemical and CS-AFM investigations. J Solid State Electrochem 11:1013–1021

    Article  CAS  Google Scholar 

  30. Geniès EM, Lapkowski M (1987) Spectroelectrochemical evidence for an intermediate in the electropolymerization of aniline. J Electroanal Chem 236:189–197

    Article  Google Scholar 

  31. Dresco PA, Zaitsev VS, Gambino RJ, Chu B (1999) Preparation and properties of magnetite and polymer magnetite nanoparticles. Langmuir 15:1945–1951

    Article  CAS  Google Scholar 

  32. Cornell VM, Schwertmann U (1998) The iron oxides: structures, properties, reaction, occurrence and uses, 2nd edn. Wiley-VCH, Weinheim

    Google Scholar 

  33. Eskandari H, Shariati MR (2011) Dodecylbenzene sulfonate-coated magnetite nanoparticles as a new adsorbent for solid phase extraction-spectrophotometric determination of ultra trace amounts of ammonium in water samples. Anal Chim Acta 704:146–153

    Article  CAS  Google Scholar 

  34. FIZ Karlsruhe Inorganic Crystal Structure Database. Collection code 633020. http://www.fiz-karlsruhe.de/icsd.html. Accessed 23 may 2017

  35. FIZ Karlsruhe Inorganic Crystal Structure Database. Collection code 247034. http://www.fiz-karlsruhe.de/icsd.html. Accessed 23 may 2017

  36. Khan US, Rahim A, Khan N, Muhammad N, Rehman F, Ahmad K, Iqbal J (2017) Aging study of the powdered magnetite nanoparticles. Mater Chem Phys 189:86–89

    Article  CAS  Google Scholar 

  37. Klug HP, Alexander LE (1974) X-ray diffraction procedures for polycrystalline and amorphous materials, 2nd edn. Wiley-Interscience Publications, New York

    Google Scholar 

  38. Zhu Y, Wu Q (1999) Synthesis of magnetite nanoparticles by precipitation with forced mixing. J Nanopart Res 1:393–396

    Article  CAS  Google Scholar 

  39. Lee Y, Lee J, Bae CJ, Park J-G, Noh H-J, Park J-H, Hyeon T (2005) Large-scale synthesis of uniform and crystalline magnetite nanoparticles using reverse micelles as nanoreactors under reflux conditions. Adv Funct Mater 15:503–509

    Article  CAS  Google Scholar 

  40. Roca AG, Morales MP, O’Grady K, Serna CJ (2006) Structural and magnetic properties of uniform magnetite nanoparticles prepared by high temperature decomposition of organic precursors. Nanotechnology 17:2783–2788

    Article  CAS  Google Scholar 

  41. Reichardt C (2003) Solvents and solvent effects in organic chemistry. Wiley-VCH, Weinheim

    Google Scholar 

  42. Brett CMA, Brett AMO (1993) Electrochemistry: principles, methods and applications. Oxford University Press, Oxford

    Google Scholar 

  43. Cruz CMGS, Ticianelli EA (1997) Electrochemical and ellipsometric studies of polyaniline films grown under cycling conditions. J Electroanal Chem 428:185–192

    Article  CAS  Google Scholar 

  44. Pud AA (1994) Stability and degradation of conducting polymers in electrochemical systems. Synth Met 66:1–18

    Article  CAS  Google Scholar 

  45. Hillier AC, Ward MD (1992) Scanning electrochemical mass sensitivity mapping of the quartz crystal microbalance in liquid media. Anal Chem 64:2539–2554

    Article  CAS  Google Scholar 

  46. Bácskai J, Kertész V, Inzelt G (1993) An electrochemical quartz crystal microbalance study of the influence of the pH and solution composition on the behaviour of poly(aniline) films. Electrochim Acta 38:393–397

    Article  Google Scholar 

  47. Torresi RM, Cordoba de Torresi SI, Gabrielli C, Keddam M, Takenouti H (1993) Quartz crystal microbalance characterization of electrochemical doping of polyaniline films. Synth Met 61:291–296

    Article  CAS  Google Scholar 

  48. Ferreira V, Cascalheira AC, Abrantes LM (2008) Electrochemical polymerisation of luminol with aniline: a new route for the preparation of self-doped polyanilines. Electrochim Acta 53:3803–3811

    Article  CAS  Google Scholar 

  49. Kosaric N, Duvnjak Z, Farkas A, Sahm H, Bringer-Meyer S, Goebel O, Mayer D (2012) Ethanol. In: Elvers B (editor-in-chief) Ullmann’s encyclopedia of industrial chemistry, v.13. Wiley-VCH, Weinheim

  50. Tang X, Jing X, Wang B, Wang F (1988) Infrared spectra of soluble polyaniline. Synth Met 24:231–238

    Article  CAS  Google Scholar 

  51. Silverstein RM, Webster FX, Kiemle DJ, Bryce DL (2014) Spectrometric identification of organic compounds. Wiley, New York

    Google Scholar 

  52. Kang ET, Neoh KG, Tan KL (1998) Polyaniline: a polymer with many interesting redox states. Prog Polym Sci 23:277–324

    Article  CAS  Google Scholar 

  53. Zheng W, Min Y, MacDiarmid AG, Angelopoulos M, Liao Y-H, Epstein AJ (1997) Effect of organic vapors on the molecular conformation of non-doped polyaniline. Synth Met 84:63–64

    Article  CAS  Google Scholar 

  54. Jiang J, Li L, Zhu M (2008) Polyaniline/magnetic ferrite nanocomposites obtained by in situ polymerization. React Funct Polym 68:57–62

    Article  CAS  Google Scholar 

  55. Xavier MG, Venancio EC, Pereira EC, Leite FL, Leite ER, MacDiarmid AG, Mattoso LHC (2008) Synthesis of nanoparticles and nanofibers of polyaniline by potentiodynamic electrochemical polymerization. J Nanosci Nanotech 8:1–4

    Article  Google Scholar 

  56. Venancio EC, Mattoso LHC, Motheo AJ (2001) Characteristics of polyaniline electrosynthesized in propylene carbonate medium in the presence of di- and trichloroacetic acids. J Braz Chem Soc 12:526–531

    Article  CAS  Google Scholar 

Download references

Acknowledgements

G.T. Franco and L.H.E. Santos are respectively grateful to the São Paulo Research Foundation (FAPESP, Process: 2014/15477-0) and to the Brazilian National Council for Scientific and Technological development (CNPq, Process: 140669/2014-0) for their scholarships. A.J. Motheo is also thankful to CNPq for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artur J. Motheo.

Electronic supplementary material

Online Resource 1

(a) Cyclic voltammogram (blue) and mass change vs. potential profile (red) for the Fe3O4-NP on Au substrate in the absence aniline (1st cycle). (b) Monitoring of the mass change variation with cycling. Conditions: aqueous 0.5 mol L-1 H2SO4; scan rate: 25 mV s-1 (DOCX 49 kb)

Online Resource 2

FTIR spectra of the PAni and PAni/magnetite films synthesized in different solvents. (a) PAni-w, (b) PAni-e, (c) PAni-w/Fe3O4-NP, and (d) PAni-e/Fe3O4-NP (DOCX 58 kb)

Online Resource 3

UV-Vis spectra of the PAni and PAni/magnetite films synthesized in different solvents. (a) PAni-w, (b) PAni-e, (c) PAni-w/Fe3O4-NP, and (d) PAni-e/Fe3O4-NP (DOCX 58 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Franco, G.T., Santos, L.H.E., Cruz, C.M.G.S. et al. Effect of the solvent on growth and properties of polyaniline-based composite films. J Solid State Electrochem 22, 1339–1347 (2018). https://doi.org/10.1007/s10008-017-3704-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3704-2

Keywords

Navigation