Skip to main content

Advertisement

Log in

Biomass-derived porous carbon electrode modified with nanostructured nickel-cobalt hydroxide for high-performance supercapacitors

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Apple-derived porous carbon (denoted as APC) is successfully prepared and analyzed as a potential carbon material by hydrothermal carbonization and pyrolysis, which exhibits a high specific surface area and porous structure. Furthermore, nickel–cobalt double hydroxide (Ni–Co DH) is synthesized by design of hybrid nanowires on APC for supercapacitors via a simple hydrothermal process. The fabricated electrode produces a capacitance of 1519 F g−1 at 1 A g−1, and 90.2% of the capacitance is retained after 2000 cycles at a high current density. An asymmetric supercapacitor (ASC) is assembled using the Ni–Co DH@APC as the positive electrode and active carbon as the negative electrode. The ASC exhibits a prominent energy density of 61.2 Wh kg−1 and high power density of 14,400 W kg−1 at 5 A g−1. The desirable electrochemical performance can be attributed to the suitability of APC as a support and the Ni–Co nanostructure constructed on the surface of APC as an effective active material for high-energy and long-life cycling supercapacitor applications. The fabricated composite provides a potential design of low-cost functional carbon materials that can be produced in large scale by using biomass as starting materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gao Y, Wu J, Zhang W, Tan Y, Gao J, Zhao J, Tang B (2014) The calcined zeolitic imidazolate framework-8 (ZIF-8) under different conditions as electrode for supercapacitor applications. J Solid State Electrochem 18(11):3203–3207

    Article  CAS  Google Scholar 

  2. Yu C, Zhang L, Shi J, Zhao J, Gao J, Yan D (2008) A simple template‐free strategy to synthesize nanoporous manganese and nickel oxides with narrow pore size distribution, and their electrochemical properties. Adv Funct Mater 18(10):1544–1554

    Article  Google Scholar 

  3. Zhu T, Chen JS, Lou XW (2010) Shape-controlled synthesis of porous Co3O4 nanostructures for application in supercapacitors. J Mater Chem 20(33):7015–7020

    Article  CAS  Google Scholar 

  4. Sun W, Rui X, Ulaganathan M, Madhavi S, Yan Q (2015) Few-layered Ni(OH)2 nanosheets for high-performance supercapacitors. J Power Sources 295:323–328.5

    Article  CAS  Google Scholar 

  5. Wu ZS, Wang DW, Ren W, Zhao J, Zhou G, Li F, Cheng HM (2010) Anchoring hydrous RuO2 on graphene sheets for high‐performance electrochemical capacitors. Adv Funct Mater 20(20):3595–3602

    Article  CAS  Google Scholar 

  6. Ahn YR, Park CR, Jo SM, Kim DY (2007) Enhanced charge-discharge characteristics of RuO2 supercapacitors on heat-treated TiO2 nanorods. Appl Phys Lett 90(12):122106–122106

    Article  Google Scholar 

  7. Zhang J, Yu Y, Liu L, Wu Y (2013) Graphene–hollow PPy sphere 3D-nanoarchitecture with enhanced electrochemical performance. Nano 5(7):3052–3057

    CAS  Google Scholar 

  8. Sawangphruk M, Kaewsongpol T (2012) Direct electrodeposition and superior pseudocapacitive property of ultrahigh porous silver-incorporated polyaniline films. Mater Lett 87:142–145

    Article  CAS  Google Scholar 

  9. Chen J, Xu J, Zhou S, Zhao N, Wong C-P (2016) Amorphous nanostructured FeOOH and Co–Ni double hydroxides for high-performance aqueous asymmetric supercapacitors. Nano Energy 21:145–153

    Article  CAS  Google Scholar 

  10. Yang M, Choi BG (2016) Rapid one-step synthesis of conductive and porous MnO2/graphene nanocomposite for high performance supercapacitors. J Electroanal Chem 776:134–138

    Article  CAS  Google Scholar 

  11. Saravanakumar B, Purushothaman KK, Muralidharan G (2015) High performance supercapacitor based on carbon coated V2O5 nanorods. J Electroanal Chem 758:111–116

    Article  CAS  Google Scholar 

  12. Wang Y, Zhang X, Li X, Li X, Zhao Y, Wei H, Liu Y, Jiang P, Liang M (2016) Highly dispersed ultrasmall Ni(OH)2 aggregated particles on a conductive support as a supercapacitor electrode with superior performance. J Colloid Interface Sci 490:252–258

    Article  Google Scholar 

  13. Tan P, Xiao T, Tan X, Xiang P, Jiang L, Wu D (2016) Facile preparation of 3D porous Ni(OH)2/AC–Ni as high performance binder free electrode for supercapacitors. J Alloys Compd 656:714–719

    Article  CAS  Google Scholar 

  14. Chen S, Duan J, Jaroniec M, Qiao SZ (2013) Hierarchically porous graphene-based hybrid electrodes with excellent electrochemical performance. J Mater Chem A 1(33):9409

    Article  CAS  Google Scholar 

  15. Wu K, Liu Q (2016) Nitrogen-doped mesoporous carbons for high performance supercapacitors. Appl Surf Sci 379:132–13916

    Article  CAS  Google Scholar 

  16. Sun Z, Hui L, Ran W, Lu Y, Jia D (2016) Facile synthesis of two-dimensional (2D) nanoporous NiO nanosheets from metal–organic frameworks with superior capacitive properties. New J Chem 40(2):1100–1103

    Article  CAS  Google Scholar 

  17. Zhou G, Xiong T, He S, Li Y, Zhu Y, Hou H (2016) Asymmetric supercapacitor based on flexible TiC/CNF felt supported interwoven nickel-cobalt binary hydroxide nanosheets. J Power Sources 317:57–64

    Article  CAS  Google Scholar 

  18. Chang L, Ren F, Zhao C, Xue X (2016) Synthesis of Co(OH)2/Ni(OH)2 nanomaterials with excellent pseudocapacitive behavior and high cycling stability for supercapacitors. J Electroanal Chem 778:110–11519

    Article  CAS  Google Scholar 

  19. Zhang P, Gong Y, Wei Z, Wang J, Zhang Z, Li H, Dai S, Wang Y (2014) Updating biomass into functional carbon material in ionothermal manner. ACS Appl Mat Interfaces 6(15):12515–12522

    Article  CAS  Google Scholar 

  20. Lotfabad EM, Ding J, Cui K, Kohandehghan A, Kalisvaart WP, Hazelton M, Mitlin D (2014) High-density sodium and lithium ion battery anodes from banana peels. ACS Nano 8(7):7115–7129

    Article  CAS  Google Scholar 

  21. Wang R, Wang P, Yan X, Lang J, Peng C, Xue Q (2012) Promising porous carbon derived from celtuce leaves with outstanding supercapacitance and CO2 capture performance. ACS Appl Mat Interfaces 4(11):5800–5806

    Article  CAS  Google Scholar 

  22. Sun L, Tian C, Li M, Meng X, Wang L, Wang R, Yin J, Fu H (2013) From coconut shell to porous graphene-like nanosheets for high-power supercapacitors. J Mater Chem A 1(21):646223

    Google Scholar 

  23. Volfkovich YM, Bograchev DA, Rychagov AY, Sosenkin VE, Chaika MY (2015) Supercapacitors with carbon electrodes. Energy efficiency: modeling and experimental verification. J Solid State Electrochem 19(9):2771–2779

    Article  CAS  Google Scholar 

  24. Jiang J, Chen H, Wang Z, Bao L, Qiang Y, Guan S, Chen J (2015) Nitrogen-doped hierarchical porous carbon microsphere through KOH activation for supercapacitors. J Colloid Interface Sci 452:54–61

    Article  CAS  Google Scholar 

  25. Jiang L, Yan J, Hao L, Xue R, Sun G, Yi B (2013) High rate performance activated carbons prepared from ginkgo shells for electrochemical supercapacitors. Carbon 56:146–154

    Article  CAS  Google Scholar 

  26. Pu J, Li C, Tang L, Li T, Ling L, Zhang K, Xu Y, Li Q, Yao Y (2015) Impregnation assisted synthesis of 3D nitrogen-doped porous carbon with high capacitance. Carbon 94:650–660

    Article  CAS  Google Scholar 

  27. Wu Q, Wen M, Chen S, Wu Q (2015) Lamellar-crossing-structured Ni(OH)2/CNTs/Ni(OH)2 nanocomposite for electrochemical supercapacitor materials. J Alloys Compd 646:990–997

    Article  CAS  Google Scholar 

  28. Lo IH, Wang J-Y, Huang K-Y, Huang J-H, Kang WP (2016) Synthesis of Ni(OH)2 nanoflakes on ZnO nanowires by pulse electrodeposition for high-performance supercapacitors. J Power Sources 308:29–36

    Article  CAS  Google Scholar 

  29. Zheng X, Ye Y, Yang Q, Geng B, Zhang X (2016) Ultrafine nickel–copper carbonate hydroxide hierarchical nanowire networks for high-performance supercapacitor electrodes. Chem Eng J 290:353–360

    Article  CAS  Google Scholar 

  30. Xu H, Zhang C, Zhou W, Li GR (2015) Co(OH)2/RGO/NiO sandwich-structured nanotube arrays with special surface and synergistic effects as high-performance positive electrodes for asymmetric supercapacitors. Nano 7(40):16932–16942

    CAS  Google Scholar 

  31. Zeng W, Zhang G, Wu X, Zhang K, Zhang H, Hou S, Li C, Wang T, Duan H (2015) Construction of hierarchical CoS nanowire@NiCo2S4 nanosheet arrays via one-step ion exchange for high-performance supercapacitors. J Mater Chem A 3(47):24033–24040

    Article  CAS  Google Scholar 

  32. Tang S, Sui L, Dai Z, Zhu Z, Huangfu H (2015) High supercapacitive performance of Ni(OH)2/XC-72 composite prepared by microwave-assisted method. RSC Adv 5(54):43164–43171

    Article  CAS  Google Scholar 

  33. Shang C, Dong S, Wang S, Xiao D, Han P, Wang X, Gu L, Cui G (2013) Coaxial NixCo2x (OH)6 x/TiN nanotube arrays as supercapacitor electrodes. ACS Nano 7(6):5430–5436

    Article  CAS  Google Scholar 

  34. Li J, Yang M, Wei J, Zhou Z (2012) Preparation and electrochemical performances of doughnut-like Ni(OH)2–Co(OH)2 composites as pseudocapacitor materials. Nano 4(15):4498

    CAS  Google Scholar 

  35. Zhang H, Zhang X, Zhang D, Sun X, Lin H, Wang C, Ma Y (2013) One-step electrophoretic deposition of reduced graphene oxide and Ni(OH)2 composite films for controlled syntheses supercapacitor electrodes. J Phys Chem B 117(6):1616–1627

    Article  CAS  Google Scholar 

  36. Wang L, Chen H, Cai F, Chen M (2014) Hierarchical carbon nanotube/α-Ni(OH)2 nanosheet composite paper with enhanced electrochemical capacitance. Mater Lett 115:168–171

    Article  CAS  Google Scholar 

  37. Yin J, Lee HU, Park JY (2016) An electrodeposited graphite oxide/cobalt hydroxide/chitosan ternary composite on nickel foam as a cathode material for hybrid supercapacitors. RSC Adv 6(41):34801–34808

    Article  CAS  Google Scholar 

  38. Zhang L, Wang J, Zhu J, Zhang X, San Hui K, Hui KN (2013) 3D porous layered double hydroxides grown on graphene as advanced electrochemical pseudocapacitor materials. J Mater Chem A 1(32):9046

    Article  CAS  Google Scholar 

  39. Zheng X, Gu Z, Hu Q, Geng B, Zhang X (2015) Ultrathin porous nickel–cobalt hydroxide nanosheets for high-performance supercapacitor electrodes. RSC Adv 5(22):17007–17013

    Article  CAS  Google Scholar 

  40. Subramani K, Lakshminarasimhan N, Kamaraj P, Sathish M (2016) Facile and scalable route to sheets-on-sheet mesoporous Ni–Co-hydroxide/reduced graphene oxide nanocomposites and their electrochemical and magnetic properties. RSC Adv 6(19):15941–15951

    Article  CAS  Google Scholar 

  41. Wang X, Liu L, Wang X, Bai L, Wu H, Zhang X, Yi L, Chen Q (2010) Preparation and performances of carbon aerogel microspheres for the application of supercapacitor. J Solid State Electrochem 15(4):643–648

    Article  Google Scholar 

  42. Iqbal N, Wang X, Ahmed Babar A, Yu J, Ding B (2016) Highly flexible NiCo2O4/CNTs doped carbon nanofibers for CO2 adsorption and supercapacitor electrodes. J. Colloid Interface Sci 476:87–93

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (NSFC, 21306119), the Chengdu Science and Technology Project (2015-HM01-00531-SF), the project of the Science and Technology Department in Sichuan province (17ZDYF1877), and the Outstanding Young Scientist Foundation of Sichuan University (2013SCU04A23).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinwei Chen.

Electronic supplementary material

ESM 1

(DOC 4.54 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Chen, J., Yang, H. et al. Biomass-derived porous carbon electrode modified with nanostructured nickel-cobalt hydroxide for high-performance supercapacitors. J Solid State Electrochem 21, 2975–2984 (2017). https://doi.org/10.1007/s10008-017-3617-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3617-0

Keywords

Navigation