Skip to main content
Log in

Fundamentals and some applications of photoelectrocatalysis and effective factors on its efficiency: a review

  • Review
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Effluents of a large variety of industries usually contain important quantities of synthetic organic compounds. The discharge of these compounds in the environment causes considerable non-aesthetic pollution and serious health risk factors. Since conventional wastewater treatment plants cannot degrade the majority of these pollutants, powerful methods for the decontamination of dye wastewaters have received increasing attention over the past decade. In this work, fundamentals and main applications of photoelectrocatalysis as one of the most powerful and recent progresses of emerging photoassisted electrochemical treatments with UV irradiation are studied. The effect of various effective factors such as photoanode type, light source and its intensity, pH solution value, type and concentration of supporting electrolyte, type of cathode electrode, to be moving of photoanode or solution, thicknesses of semiconductor film on the electrode surface, and applied potential on the destruction of pollutants is described. Furthermore, various methods used for TiO2 modification are mentioned. Also, application of photocatalysts except semiconductors is presented for photoelectrocatalytic aims. Finally, application of photoelectrocatalysis in determination of materials as a new method is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47
Fig. 48
Fig. 49
Fig. 50
Fig. 51
Fig. 52
Fig. 53
Fig. 54
Fig. 55

Similar content being viewed by others

References

  1. Kato S, Masuo F (1964) Titanium dioxide-photocatalyzed oxidation. I. Titanium dioxide- photocatalyzed liquid phase oxidation of tetralin. Kogyo Kagaku Zasshi 67:42–50

    Google Scholar 

  2. McLintock S, Ritchie M (1965) Reactions on titanium dioxide; photoadsorption and oxidation of ethylene and propylene. Trans Faraday Soc 61:1007–1016

    Article  CAS  Google Scholar 

  3. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    Article  CAS  Google Scholar 

  4. Leung DYC, Fu X, Wang C, Ni M, Leung MKH, Wang X, Fu X (2010) Hydrogen production over titania-based photocatalysts. Chem Sus Chem 3:681–694

    Article  CAS  Google Scholar 

  5. Bard AJ (1982) Design of semiconductor photoelectrochemical systems for solar energy conversion. J Phys Chem 86:172–177

    Article  CAS  Google Scholar 

  6. Majumder T, Mondal SP (2016) Advantages of nitrogen-doped graphene quantum dots as a green sensitizer with ZnO nanorod based photoanodes for solar energy conversion. J Electroanal Chem 769:48–52

    Article  CAS  Google Scholar 

  7. Ali H, Ismail N, Mekewi M, Hengazy AC (2015) Facile one-step process for synthesis of vertically aligned cobalt oxide doped TiO2 nanotube arrays for solar energy conversion. J Solid State Electrochem 19:3019–3026

    Article  CAS  Google Scholar 

  8. Huang J, Tan X, Yu T, Zhao L, Liu H (2015) Enhanced photovoltaic and photoelectrocatalytic properties by free-standing TiO2 nanotubes via anodization. J Solid State Electrochem 19:1151–1160

    Article  CAS  Google Scholar 

  9. Pelizzetti E, Schiavello M (eds) (1991) Photochemical conversion and storage of solar energy. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  10. Schiavello M (ed) (1988) Photocatalysis and environment. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  11. Ollis DF, Al-Ekabi H (eds) (1993) Photocatalytic purification and treatment of water and air. Elsevier, Amsterdam

    Google Scholar 

  12. Liu N, Paramasivam I, Schmuki P, Yang M (2012) Some critical factors for photocatalysis on self-organized TiO2 nanotubes. J Solid State Electrochem 16:3499–3504

    Article  CAS  Google Scholar 

  13. Forgacs E, Cserhati T, Oros G (2004) Removal of synthetic dyes from wastewaters: a review. Environ Int 30:953–971

    Article  CAS  Google Scholar 

  14. Robinson T, McMullan G, Marchant R, Nigam P (2001) Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour Technol 77:247–255

    Article  CAS  Google Scholar 

  15. Gutierrez MC, Crespi M (1999) A review of electrochemical treatments for colour elimination. J Soc Dyes Col 115:342–345

    CAS  Google Scholar 

  16. Hao OJ, Kim H, Chiang PC (2000) Decolorization of wastewater. Crit Rev Environ Sci Technol 30:449–502

    Article  CAS  Google Scholar 

  17. Naim MM, El Abd YM (2002) Removal and recovery of dyestuffs from dyeing wastewaters. Sep Purif Rev 31:171–228

    Article  CAS  Google Scholar 

  18. dos Santos AB, Cervantes FJ, van Lier JB (2007) Review paper on current technologies for decolourisation of textile wastewaters: perspectives for anaerobic biotechnology. Bioresour Technol 98:2369–2385

    Article  CAS  Google Scholar 

  19. Rajeshwar K, Ibanez JG (1997) Fundamentals and application in pollution abatement. Academic Press, San Diego, CA

    Google Scholar 

  20. Genders D, Weinberg N (eds) (1992) Electrochemistry for a cleaner environment. The Electrosynthesis Company Inc., New York

    Google Scholar 

  21. Pletcher D, Walsh FC (1993) Industrial electrochemistry, 2rd edn. Blackie Academic and Professional, London

    Book  Google Scholar 

  22. Simonsson D (1997) Electrochemistry for a cleaner environment. Chem Soc Rev 26:181–189

    Article  CAS  Google Scholar 

  23. Brillas E, Cabot PL, Casado J (2003) In: Tarr M (ed) Chemical degradation methods for wastes and pollutants environmental and industrial applications. New York, Marcel Dekker

    Google Scholar 

  24. Chen G (2004) Electrochemical technologies in wastewater treatment. Sep Purif Technol 38:11–41

    Article  CAS  Google Scholar 

  25. Panizza M, Cerisola G (2005) Application of diamond electrodes to electrochemical processes. Electrochim Acta 51:191–199

    Article  CAS  Google Scholar 

  26. Martinez-Huitle CA, Ferro S (2006) Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes. Chem Soc Rev 35:1324–1340

    Article  CAS  Google Scholar 

  27. Kraft A (2007) Doped diamond: a compact review on a new, versatile electrode material. Int J Electrochem Sci 2:355–385

    CAS  Google Scholar 

  28. Nosaka Y, Fox MA (1988) Kinetics for electron transfer from laser-pulse irradiated colloidal semiconductors to adsorbed methylviologen: dependence of the quantum yield on incident pulse width. J Phys Chem 92:1893–1897

    Article  CAS  Google Scholar 

  29. Xie YB, Li XZ (2006) Interactive oxidation of photoelectrocatalysis and electro-Fenton for azo dye degradation using TiO2–Ti mesh and reticulated vitreous carbon electrodes. Mater Chem Phys 95:39–50

    Article  CAS  Google Scholar 

  30. Guo Q, Zhou C, Ma Z, Ren Z, Fan H, Yang X (2016) Elementary photocatalytic chemistry on TiO2 surfaces. Chem Soc Rev 45:3701–3730

    Article  CAS  Google Scholar 

  31. Nowotny J, Abdul Alim M, Bak T, Asri Idris M, Ionescu M, Prince K, Zainizan Sahdan M, Sopian K, Asri Mat Teridie M, Sigmund W (2015) Defect chemistry and defect engineering of TiO2-based semiconductors for solar energy conversion. Chem Soc Rev 44:8424–8442

    Article  CAS  Google Scholar 

  32. An T, Zhang W, Xiao X, Sheng G, Fu J, Zhu X (2004) Photoelectrocatalytic degradation of quinoline with a novel three-dimensional electrode-packed bed photocatalytic reactor. J Photochem Photobiol A Chem 161:233–242

    Article  CAS  Google Scholar 

  33. Ojani R, Raoof JB, Zarei E (2012) Electrochemical monitoring of photoelectrocatalytic degradation of rhodamine B using TiO2 thin film modified graphite electrode. J Solid State Electrochem 16:2143–2149

    Article  CAS  Google Scholar 

  34. Hou WM, Ku Y (2013) Photoelectrocatalytic decomposition of gaseous isopropanol in a polymer electrolyte photoreactor. J Solid State Electrochem 17:737–741

    Article  CAS  Google Scholar 

  35. Vinodgopa K, Hotchandani S, Kama PV (1993) Electrochemically assisted photocatalysis. TiO2 particulate film electrodes for photocatalytic degradation of 4-chlorophenol. J Phys Chem 97:9040–9044

    Article  Google Scholar 

  36. Carneiro PA, Osugi ME, Fugivara CS, Boralle N, Furlan M, Zanoni MVB (2005) Evaluation of different electrochemical methods on the oxidation and degradation of Reactive Blue 4 in aqueous solution. Chemosphere 59:431–439

    Article  CAS  Google Scholar 

  37. Zainal Z, Lee CY, Hussein MZ, Kassim A, Yusof NA (2005) Electrochemical-assisted photodegradation of dye on TiO2 thin films: investigation on the effect of operational parameters. J Hazard Mater B 118:197–203

    Article  CAS  Google Scholar 

  38. Carneiro PA, Osugi ME, Sene JJ, Anderson MA, Zanoni MVB (2004) Evaluation of color removal and degradation of a reactive textile azo dye on nanoporous TiO2 thin-film electrodes. Electrochim Acta 49:3807–3820

    Article  CAS  Google Scholar 

  39. Socha A, Sochocka E, Podsiadły R, Sokołowska J (2006) Electrochemical and photoelectrochemical degradation of direct dyes. Color Technol 122:207–212

    Article  CAS  Google Scholar 

  40. Socha A, Chrzescijanska E, Kusmierek E (2005) Electrochemical and photoelectrochemical treatment of 1-aminonaphthalene-3,6-disulphonic acid. Dyes Pigments 67:71–75

    Article  CAS  Google Scholar 

  41. Socha A, Sochocka E, Podsiadły R, Sokołowska J (2007) Electrochemical and photoelectrochemical treatment of CI Acid Violet 1. Dyes Pigments 73:390–393

    Article  CAS  Google Scholar 

  42. de Moura DC, de Araujo CKC, Zanta CLPS, Salazar R, Martinez-Huitle CA (2014) Active chlorine species electrogenerated on Ti/Ru0.3Ti0.7O2 surface: electrochemical behavior, concentration determination and their application. J Electroanal Chem 731:145–152

    Article  CAS  Google Scholar 

  43. Catanho M, Malpass GRP, Motheo AJ (2006) Photoelectrochemical treatment of the dye reactive red 198 using DSA® electrodes. Appl Catal B Environ 62:193–200

    Article  CAS  Google Scholar 

  44. Comninellis C (1994) Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment. Electrochim Acta 39:1857–1862

    Article  CAS  Google Scholar 

  45. Ojani R, Raoof JB, Zarei E (2012) Electrochemical monitoring of photoelectrocatalytic degradation of 3,4-dichlorophenol using TiO2 thin film modified graphite electrode. 59:917–922

  46. Shinde PS, Sadale SB, Patil PS, Bhosale PN, Bruger A, Neumann-Spallart M, Bhosale CH (2008) Properties of spray deposited titanium dioxide thin films and their application in photoelectrocatalysis. Sol Energy Mater Sol Cells 92:283–290

    Article  CAS  Google Scholar 

  47. Shang J, Zhao F, Zhu T, Wang Q, Song H, Zhang Y (2010) Electric-agitation-enhanced photodegradation of rhodamine B over planar photoelectrocatalytic devices using a TiO2 nanosized layer. Appl Catal B Environ 96:185–189

    Article  CAS  Google Scholar 

  48. Oliveira HG, Nery DC, Longo C (2010) Effect of applied potential on photocatalytic phenol degradation using nanocrystalline TiO2 electrodes. Appl Catal B Environ 93:205–211

    Article  CAS  Google Scholar 

  49. Siripala W, Ivanovskaya A, Jaramillo TF, Baeck SH, McFarland EW (2003) A Cu2O/TiO2 heterojunction thin film cathode for photoelectrocatalysis. Sol Energy Mater Sol Cells 77:229–237

    Article  CAS  Google Scholar 

  50. Zhanga FJ, Chena ML, Lima CS, Oh WC (2009) Fabrication of CNT/TiO2 electrodes and their photoelectrocatalytic properties for methylene blue degradation. J Ceram Process Res 10:600–605

    Google Scholar 

  51. Gao B, Peng C, Chen GZ, Puma GL (2008) Photo-electro-catalysis enhancement on carbon nanotubes/titanium dioxide (CNTs/TiO2) composite prepared by a novel surfactant wrapping sol–gel method. Appl Catal B Environ 85:17–23

    Article  CAS  Google Scholar 

  52. Janáky C, Kecsenovity E, Rajeshwar K (2016) Electrodeposition of inorganic oxide/nanocarbon composites: opportunities and challenges. ChemElectroChem 3:181–192

    Article  CAS  Google Scholar 

  53. Ku Y, Lee YC, Wang WY (2006) Photocatalytic decomposition of 2-chlorophenol in aqueous solution by UV/TiO2 process with applied external bias voltage. J Hazard Mater B 138:350–356

    Article  CAS  Google Scholar 

  54. Fernandez J, Kiwwi J, Baeza J, Freer J, Lizama C, Mansilla HD (2004) Orange II photocatalysis on immobilised TiO2: effect of the pH and H2O2. Appl Catal B 48:205–211

    Article  CAS  Google Scholar 

  55. Vinodgopal K, Stafford U, Gray KA, Kamat PV (1994) Electrochemically assisted photocatalysis. 2. The role of oxygen and reaction intermediates in the degradation of 4-chlorophenol on immobilized TiO2 particulate films. J Phys Chem 98:6797–6803

    Article  CAS  Google Scholar 

  56. Pecchi G, Reyes P, Sanhueza P, Villaseor J (2001) Photocatalytic degradation of pentachlorophenol on TiO2 sol–gel catalysts. Chemosphere 43:141–146

    Article  CAS  Google Scholar 

  57. Haick H, Paz Y (2003) Long-range effects of noble metals on the photocatalytic properties of titanium dioxide. J Phys Chem B 107:2319–2326

    Article  CAS  Google Scholar 

  58. Hidaka H, Ajisaka K, Horikoshi S, Oyama T, Zhao JC, Serpone N (1999) Photodecomposition of amino acids and photocurrent generation on TiO2/OTE electrodes prepared by pulse laser deposition. Catal Letts 60:95–98

    Article  CAS  Google Scholar 

  59. Rodriguez J, Gomez M, Lindquist SE, Granqvist CG (2000) Photo-electrocatalytic degradation of 4-chlorophenol over sputter deposited Ti oxide films. Thin Solid Films 360:250–255

    Article  CAS  Google Scholar 

  60. Moriguchi I, Maeda H, Teraoka Y, Kagawa S (1997) Preparation of a TiO2 nanoparticulate film using a two-dimensional sol-gel process. Chem Mater 9:1050–1057

    Article  CAS  Google Scholar 

  61. Li MC, Shen JN (2006) Photoelectrochemical oxidation behavior of organic substances on TiO2 thin-film electrodes. J Solid State Electrochem 10:980–986

    Article  CAS  Google Scholar 

  62. Afshar A, Vaezi MR (2004) Evaluation of electrical breakdown of anodic films on titanium in phosphate-base solutions. Sur Coat Tech 186:398–404

    Article  CAS  Google Scholar 

  63. Xie YB, Li XZ (2006) Preparation and characterization of TiO2/Ti film electrodes by anodization at low voltage for photoelectrocatalytic application. J Appl Electrochem 36:663–668

    Article  CAS  Google Scholar 

  64. Li XZ, Liu HL, Yue T (2000) Photoelectrocatalytic oxidation of rose bengal in aqueous solution using a Ti/TiO2 mesh electrode. Environ Sci Technol 34:4401–4406

    Article  CAS  Google Scholar 

  65. Ge M-Z, Cao C-Y, Huang J-Y, Li S-H, Zhang S-N, Deng S, Li Q-S, Zhang K-Q, Lai Y-K (2016) Synthesis, modification, and photo/photoelectrocatalytic degradation applications of TiO2 nanotube arrays: a review. Nanotechnology Rev 5:75–112

    Article  CAS  Google Scholar 

  66. Ge M, Cao C, Huang J, Li S, Chen Z, Zhang K-Q, Al-Deyab SS, Lai Y (2016) A review of one-dimensional TiO2 nanostructured materials for environmental and energy applications. J Mater Chem A 4:6772–6801

    Article  CAS  Google Scholar 

  67. Gong D, Grimes CA, Varghese OK, Hu W, Singh RS, Chen Z, Dickey EC (2001) Titanium oxide nanotube arrays prepared by anodic oxidation. J Mater Res 16:3331–3334

    Article  CAS  Google Scholar 

  68. Huang J-Y, Zhang K-Q, Lai Y-K (2013) Fabrication, modification, and emerging applications of TiO2 nanotube arrays by electrochemical synthesis: a review. Int J Photoenergy . doi:10.1155/2013/761971761971

    Google Scholar 

  69. Zwilling V, Darque-Ceretti E, Boutry-Forveille A, David D, Perrin MY (1999) Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy. Surf Interface Anal 27:629–637

    Article  CAS  Google Scholar 

  70. Mor GK, Shankar K, Paulose M, Varghese OK, Grimes CA (2006) Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Lett 6:215–218

    Article  CAS  Google Scholar 

  71. Pena PA, Iztapalapa AM, Rojas LL, Gonzalez I (2013) Effect of water and fluoride content on morphology and barrier layer properties of TiO2 nanotubes grown in ethylene glycol-based electrolytes. J Solid State Electrochem 17:2939–2947

    Article  CAS  Google Scholar 

  72. Baram N, Starosvetsky D, Starosvetsky J, Epshtein M, Armon R, Ein-Eli Y (2009) Enhanced inactivation of E. coli bacteria using immobilized porous TiO2 photoelectrocatalysis. Electrochem Acta 54:3381–3386

    Article  CAS  Google Scholar 

  73. Chen H, Li J, Chen Q, Li D, Zhou B (2013) Photoelectrocatalytic performance of benzoic acid on TiO2 nanotube array electrodes. Int J Photoenergy 2013:567426. doi:10.1155/2013/567426

    Google Scholar 

  74. Nohara K, Hidaka H, Pelizzetti E, Serpone N (1997) Processes of formation of NH4+ and NO3− ions during the photocatalyzed oxidation of N-containing compounds at the titania/water interface. J Photochem Photobiol A Chem 102:265–272

    Article  CAS  Google Scholar 

  75. Kim DH, Anderson MA (1996) Solution factors affecting the photocatalytic and photoelectrocatalytic degradation of formic acid using supported TiO2 thin films. J Photochem Photobiol A Chem 94:221–229

    Article  CAS  Google Scholar 

  76. Kesselman JM, Lewis NS, Hoffmann MR (1997) Photoelectrochemical degradation of 4-chlorocatechol at TiO2 electrodes: comparison between sorption and photoreactivity. Environ Sci Technol 31:2298–2302

    Article  CAS  Google Scholar 

  77. Ojani R, Raoof JB, Khanmohammadi A, Zarei E (2013) Photoelectrocatalytic degradation of 3-nitrophenol at surface of Ti/TiO2 electrode. J Solid State Electrochem 17:63–68

    Article  CAS  Google Scholar 

  78. Quan X, Ruan X, Zhao H, Chen S, Zhao Y (2007) Photoelectrocatalytic degradation of pentachlorophenol in aqueous solution using a TiO2 nanotube film electrode. Environ Pollut 147:409–414

    Article  CAS  Google Scholar 

  79. Jorge SMA, Sene JJ, Florentino AO (2005) Photoelectrocatalytic treatment of p-nitrophenol using Ti/TiO2 thin film electrode. J Photochem Photobio A Chem 174:71–75

    Article  CAS  Google Scholar 

  80. Zanoni MVB, Sene JJ, Anderson MA (2003) Photoelectrocatalytic degradation of remazol brilliant orange 3R on titanium dioxide thin-film electrodes. J Photochem Photobio A Chem 157:55–63

    Article  CAS  Google Scholar 

  81. Candal RJ, Zeltner WA, Anderson MA (2000) Effects of pH and applied potential on photocurrent and oxidation rate of saline solutions of formic acid in a photoelectrocatalytic reactor. Environ Sci Technol 34:3443–3451

    Article  CAS  Google Scholar 

  82. Gerischer H, Heller A (1991) The role of oxygen in photooxidation of organic molecules on semiconductor particles. J Phys Chem 95:5261–5267

    Article  CAS  Google Scholar 

  83. An TC, Xiong Y, Li GY, Zha CH, Zhu XH (2002) Synergetic effect in degradation of formic acid using a new photoelectrochemical reactor. J Photochem Photobio A Chem 152:155–165

    Article  CAS  Google Scholar 

  84. Yang J, Chen CC, Ji HW, Ma WH, Zhao JC (2005) Mechanism of TiO2-assisted photocatalytic degradation of dyes under visible irradiation: photoelectrocatalytic study by TiO2-film electrodes. J Phys Chem B 109:21900–21907

    Article  CAS  Google Scholar 

  85. Vilhunen SH, Sillanpää MET (2009) Ultraviolet light emitting diodes and hydrogen peroxide in the photodegradation of aqueous phenol. J Hazard Mater 161:1530–1534

    Article  CAS  Google Scholar 

  86. Foller PC, Bombard RT (1995) Processes for the production of mixtures of caustic soda and hydrogen peroxide via the reduction of oxygen. J Appl Electrochem 25:613–627

    Article  CAS  Google Scholar 

  87. Li XZ, Liu HS (2005) Development of an E-H2O2/TiO2 photoelectrocatalytic oxidation system for water and wastewater treatment. Environ Sci Technol 39:4614–4620

    Article  CAS  Google Scholar 

  88. Xie YB, Li XZ (2006) Degradation of bisphenol A in aqueous solution by H2O2 assisted photoelectrocatalytic oxidation. J Hazard Mater B 138:526–533

    Article  CAS  Google Scholar 

  89. Li XZ, Liu HL, Yue PT, Sun YP (2000) Photoelectrocatalytic oxidation of rose bengal in aqueous solution using a Ti/TiO2 mesh electrode. Environ Sci Technol 34:4401–4406

    Article  CAS  Google Scholar 

  90. Zainal Z, Lee CY, Hussein MZ, Kassim A, Yusof NA (2007) Electrochemical-assisted photodegradation of mixed dye and textile effluents using TiO2 thin films. J Hazard Mater 146:73–80

    Article  CAS  Google Scholar 

  91. Sayılkan H (2007) Improved photocatalytic activity of Sn4+-doped and undoped TiO2 thin film coated stainless steel under UV and Vis-irradiation. Appl Catal A General 319:230–236

    Article  CAS  Google Scholar 

  92. Xu Y, He Y, Cao X, Zhong D, Jia J (2008) TiO2/Ti rotating disk photoelectrocatalytic (PEC) reactor: a combination of highly effective thin-film PEC and conventional PEC processes on a single electrode. Environ Sci Technol 42:2612–2617

    Article  CAS  Google Scholar 

  93. Xu Y, Jia J, Zhong D, Wang Y (2009) Degradation of dye wastewater in thin-film photoelectrocatalytic (PEC) reactor with slant-placed TiO2/Ti anode. Chem Eng J 150:302–307

    Article  CAS  Google Scholar 

  94. Skoog DA, Holler FJ, Nieman TA (1998) Principle of instrumental analysis, 5rd edn. US, Thomson Learning

    Google Scholar 

  95. Yu JG, Zhao XJ, Zhao QN, Wang G (2001) Preparation and characterization of super-hydrophilic porous TiO2 coating films. Mater Chem Phys 68:253–259

    Article  CAS  Google Scholar 

  96. Yu JG, Zhou MH, Yu HG, Zhang QJ, Yu Y (2006) Enhanced photoinduced super-hydrophilicity of the sol-gel-derived TiO2 thin films by Fe-doping. Mater Chem Phys 95:193–196

    Article  CAS  Google Scholar 

  97. Su B, Ma Y, Du Y, Wang C (2009) Study of photoelectrocatalytic degradation behavior of p-nitrophenol with nano-TiO2 modified film at a rotating ring–disk electrode. Electrochem Commun 11:1154–1157

    Article  CAS  Google Scholar 

  98. Zhou MH, Lei LC (2006) An improved UV/Fe3+ process by combination with electrocatalysis for p-nitrophenol degradation. Chemosphere 63:1032–1040

    Article  CAS  Google Scholar 

  99. Di Paola A, Augugliaro V, Palmisano L, Pantaleo G, Savinov E (2003) Heterogeneous photocatalytic degradation of nitrophenols. J Photochem Photobiol A Chem 155:207–214

    Article  CAS  Google Scholar 

  100. Butterfield IM, Christensen PA, Hamnett A, Shaw KE, Walker GM, Walker SA, Howarth CR (1997) Applied studies on immobilized titanium dioxide films ascatalysts for the photoelectrochemical detoxification of water. J Appl Electrochem 27:385–395

    Article  CAS  Google Scholar 

  101. Schafani A, Palmisano L, Schiavello M (1990) Influence of the preparation methods of titanium dioxide on the photocatalytic degradation of phenol in aqueous dispersion. J Phys Chem 94:829–832

    Article  Google Scholar 

  102. Hitchman ML, Tian F (2002) Studies of TiO2 thin films prepared by chemical vapour deposition for photocatalytic and photoelectrocatalytic degradation of 4-chlorophenol. J Electroanal Chem 538−539:165–172

  103. Heikkila M, Puukilainen E, Ritala M, Leskela M (2009) Effect of thickness of ALD grown TiO2 films on photoelectrocatalysis. J Photochem Photobiol A Chem 204:200–208

    Article  CAS  Google Scholar 

  104. Sheng G, Cui M, Li G, Zhang W, An T, Xiao X, Fu J (2003) Photoelectrocatalytic degradation of reactive brilliant orange K-R in a new continuous flow photoelectrocatalytic reactor. Appl Catal A General 255:221–229

    Article  CAS  Google Scholar 

  105. Ollis DF (1985) Contaminant degradation in water. Environ Sci Technol 19:480–484

    Article  CAS  Google Scholar 

  106. Jackson JD (1975) Classical electrodynamics. Wiley and Sons, New York

    Google Scholar 

  107. Ollis DF, Pelizzetti E, Serpone N (1991) Photocatalyzed destruction of water contaminants. Environ Sci Technol 25:1523–1529

    Article  Google Scholar 

  108. Matthews RW (1987) Photooxidation of organic impurities in water using thin films of titanium dioxide. J Phys Chem 91:3328–3333

    Article  CAS  Google Scholar 

  109. Henglein A (1982) Photochemistry of colloidal cadmium sulfide. 2. Effects of adsorbed methyl viologen and of colloidal platinum. J Phys Chem 86:2291–2293

    Article  CAS  Google Scholar 

  110. Yu J, Gong C, Wu Z, Wu Y, Xiao W, Su Y, Sun L, Lin C (2015) Efficient visible light-induced photoelectrocatalytic hydrogen production using CdS sensitized TiO2 nanorods on TiO2 nanotube arrays. J Mater Chem A 3:22218–22226

    Article  CAS  Google Scholar 

  111. Chen XB, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107:2891–2959

    Article  CAS  Google Scholar 

  112. Wahyuningsih S, Purnawan C, Kartikasari PA, Praistia N (2014) Visible light photoelectrocatalytic degradation of rhodamine B using a dye-sensitised TiO2 electrode. Chem Pap 68:1248–1256

    Article  CAS  Google Scholar 

  113. Qin G, Wu Q, Sun Z, Wang Y, Luo J, Xue S (2012) Enhanced photoelectrocatalytic degradation of phenols with bifunctionalized dye-sensitized TiO2 film. J Hazard Mater 199–200:226–232

    Article  CAS  Google Scholar 

  114. Wang X, Zhao H, Quan X, Zhao Y, Chen S (2009) Visible light photoelectrocatalysis with salicylic acid-modified TiO2 nanotube array electrode for p-nitrophenol degradation. J Hazard Mater 166:547–552

    Article  CAS  Google Scholar 

  115. Rajeshwar K, Thomas A, Janaky C (2015) Photocatalytic activity of inorganic semiconductor surfaces: myths, hype, and reality. J Phys Chem Lett 6:139–147

    Article  CAS  Google Scholar 

  116. Xing L, Jia J, Wang Y, Dong S (2012) Lanthanide-doped TiO2 nanoparticles–modified electrode for photoelectrocatalytic degradation of dye. Environ Prog Sustain Energy. doi:10.1002/ep

    Google Scholar 

  117. Cheng Z-L, Han S (2016) Preparation and photoelectrocatalytic performance of N-doped TiO2/NaY zeolite membrane composite electrode material. Water Sci Technol 73:486–492

    Article  Google Scholar 

  118. Li J, Lu N, Quan X, Chen S, Zhao H (2008) Facile method for fabricating boron-doped TiO2 nanotube array with enhanced photoelectrocatalytic properties. Ind Eng Chem Res 47:3804–3808

    Article  CAS  Google Scholar 

  119. Ye MD, Gong JJ, Lai YK, Lin CJ, Lin ZQ (2012) High-efficiency photoelectrocatalytic hydrogen generation enabled by palladium quantum dots-sensitized TiO2 nanotube arrays. J Am Chem Soc 134:15720–15723

    Article  CAS  Google Scholar 

  120. Xie K, Sun L, Wang C, Lai Y, Wang M, Chen H, Lina C (2010) Photoelectrocatalytic properties of Ag nanoparticles loaded TiO2 nanotube arrays prepared by pulse current deposition. Electrochim Acta 55:7211–7218

    Article  CAS  Google Scholar 

  121. Chatterjee A, Niwa S, Mizukami F (2005) Structure and property correlation for Ag deposition on α-Al2O3-a first principle study. J Mol Graphics Model 23:447–456

    Article  CAS  Google Scholar 

  122. Traversa E, Vona MLD, Nunziante P, Licoccia S, Sasaki T, Koshizaki N (2000) Sol-gel preparation and characterization of Ag-TiO2 nanocomposite thin films. J Sol-Gel Sci Technol 19:733–736

    Article  CAS  Google Scholar 

  123. Tanahashi I, Yamazaki F, Hamada K (2006) Localized surface plasmon resonance sensing properties of Ag/TiO2 films. Chem Lett 35:454–455

    Article  CAS  Google Scholar 

  124. Tatsuma T, Takada K, Miyazaki T (2007) UV-light-induced swelling and visible-light-induced shrinking of a TiO2-containing redox gel. Adv Mater 19:1249–1251

    Article  CAS  Google Scholar 

  125. Gu D, Wang Y, Li Z, Liu Y, Wang B, Wu H (2016) UV-light aided photoelectrochemical synthesis of Au/TiO2NTs for photoelectrocatalytic degradation of HPAM. RSC Adv 6:63711–63716

    Article  CAS  Google Scholar 

  126. Ramirez G, Ferraudi G, Chen YY, Trollund E, Villagra D (2009) Enhanced photoelectrochemical catalysis of CO2 reduction mediated by a supramolecular electrode of packed CoII(tetrabenzoporphyrin). Inorg Chim Acta 362:5–10

    Article  CAS  Google Scholar 

  127. Dilgin Y, Dursun Z, Nisli G, Gorton L (2005) Photoelectrochemical investigation of methylene blue immobilized on zirconium phosphate modified carbon paste electrode in flow injectrion system. Anal Chim Acta 542:162–168

    Article  CAS  Google Scholar 

  128. Jorge SMA, Sene JJ, Florentino AO (2005) Photoelectrocatalytic treatment of p-nitrophenol using Ti/TiO2 thin-film electrode. J Photochem Photobiol A Chem 174:71–75

    Article  CAS  Google Scholar 

  129. Shang J, Xie S, Zhu T, Li J (2007) Solid-state, planar photoelectrocatalytic devices using a nanosized TiO2 layer. Environ Sci Technol 41:7876–7880

    Article  CAS  Google Scholar 

  130. Adan C, Marugan J, Sanchez E, Pablos C, van Grieken R (2016) Understanding the effect of morphology on the photocatalytic activity of TiO2 nanotube array electrodes. Electrochim Acta 191:521–529

    Article  CAS  Google Scholar 

  131. Liu J, Lu S, Liang X, Gan Q, Wang Y, Li H (2016) Photoelectrocatalytic oxidation of ascorbic acid and electrocatalytic reduction of dioxygen by polyaniline films for renewable energy conversion. J Electroanal Chem 764:15–22

    Article  CAS  Google Scholar 

  132. Wang GL, Xu JJ, Chen HY, Fu SZ (2009) Label-free photoelectrochemical immunoassay for α-fetoprotein detection based on TiO2/CdS hybrid. Biosens Bioelectron 25:791–796

    Article  CAS  Google Scholar 

  133. Liu S, Li C, Cheng J, Zhou Y (2006) Selective photoelectrochemical detection of DNA with high-affinity metallointercalator and tin oxide nanoparticle electrode. Anal Chem 78:4722–4726

    Article  CAS  Google Scholar 

  134. Li J, Zheng L, Li L, Shi G, Xian Y, Jin L (2007) Photoelectro-synergistic catalysis combined with a FIA system application on determination of chemical oxygen demand. Talanta 72:1752–1756

    Article  CAS  Google Scholar 

  135. Mo H, Tang Y, Wang X, Liu J, Kong D, Chen Y, Wan P, Cheng H, Sun T, Zhang L, Zhang M, Liu S, Sun Y, Wang N, Xing L, Wang L, Jiang Y, Xu X, Zhang Y, Meng X (2015) Development of a three-dimensional structured carbon fiber felt/β-PbO2 electrode and its application in chemical oxygen demand determination. Electrochim Acta 176:1100–1107

    Article  CAS  Google Scholar 

  136. Dilgin Y, Dursun Z, Nisli G (2003) Flow injection amperometric determination of ascorbic acid using a photoelectrochemical reaction after immobilization of methylene blue on muscovite. Turk J Chem 27:167–180

    CAS  Google Scholar 

  137. Wang GL, Xu JJ, Chen HY (2009) Dopamine sensitized nanoporous TiO2 film on electrodes: photoelectrochemical sensing of NADH under visible irradiation. Biosens Bioelectron 24:2494–2498

    Article  CAS  Google Scholar 

  138. Dilgin Y, Gorton L, Nisli G (2007) Photoelectrocatalytic oxidation of NADH with electropolymerized toluidine blue O. Electroanalysis 19:286–293

    Article  CAS  Google Scholar 

  139. Gligor D, Dilgin Y, Popescu IC, Gorton L (2009) Photoelectrocatalytic oxidation of NADH at a graphite electrode modified with a new polymeric phenothiazine. Electroanalysis 21:360–367

    Article  CAS  Google Scholar 

  140. Dilgin DG, Gligor D, Gokcel HI, Dursun Z, Dilgin Y (2010) Photoelectrocatalytic oxidation of NADH in a flow injection analysis system using a poly-hematoxylin modified glassy carbon electrode. Biosens Biolectron 26:411–417

    Article  CAS  Google Scholar 

  141. Dilgin DG, Gligor D, Gokcel HI, Dursun Z, Dilgin Y (2011) Glassy carbon electrode modified with poly-Neutral Red for photoelectrocatalytic oxidation of NADH. Microchim Acta 173:469–476

    Article  CAS  Google Scholar 

  142. Dilgin Y, Dilgin DG, Dursun Z, Gokcel HI, Gligor D, Bayrak B, Ertek B (2011) Photoelectrocatalytic determination of NADH in a flow injection system with electropolymerized methylene blue. Electrochim Acta 56:1138–1143

    Article  CAS  Google Scholar 

  143. Li L, Zhang S, Zhao H (2011) A low cost universal photoelectrochemical detector for organic compounds based on photoelectrocatalytic oxidation at a nanostructured TiO2 photoanode. J Electroanal Chem 656:211–217

    Article  CAS  Google Scholar 

  144. Ojani R, Raoof JB, Zarei E (2012) Photoelectrocatalytic oxidation of formaldehyde using a Ti/TiO2 foil electrode. Application for its novel and simple photoelectrochemical determination Talanta 99:277–282

    CAS  Google Scholar 

  145. Ojani R, Zarei E (2013) A new and simple electrochemically assisted photocatalysis sensor of hydrazine using a Ti/TiO2 electrode. J Braz Chem Soc 24:657–662

    CAS  Google Scholar 

  146. Kato S, Masuo F (1964) Titanium dioxide-photocatalyzed oxidation. I. Titanium dioxide- photocatalyzed liquid phase oxidation of tetralin. Kogyo Kagaku Zasshi 67:42–50

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ebrahim Zarei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zarei, E., Ojani, R. Fundamentals and some applications of photoelectrocatalysis and effective factors on its efficiency: a review. J Solid State Electrochem 21, 305–336 (2017). https://doi.org/10.1007/s10008-016-3385-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3385-2

Keywords

Navigation