Skip to main content
Log in

Enhanced electrochemiluminescence of CdSe quantum dots coupled with MoS2-chitosan nanosheets

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A novel molybdenum sulfide-chitosan/CdSe quantum dots (MoS2-CS/CdSe QDs) composite was prepared by a facile liquid chemistry procedure. The composition and morphology of the composite as-prepared were characterized by a series of measurements. The electrode modified with MoS2-CS/CdSe QDs composite has excellent electrochemiluminescence (ECL) property that benefited from the synergistic effect of MoS2 nanosheets, CdSe QDs, and CS molecules. Based on strong and stable ECL emission, the electrode as-modified was used as ECL sensor for the detection of uric acid (UA) and the results show that the detection linear range for UA is from 0.10 to 140 nM with the detection limit of 0.040 nM. Depending on its good sensitivity and selectivity, this ECL sensor was successfully applied to determine uric acid in urine sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Coleman J, Lotya M, O’Neill A, Bergin S (2011) Two-dimensional nanosheets produced by liquidexfoliation of layered materials. Science 331:568–571

    Article  CAS  Google Scholar 

  2. Ramakrishna Matte HSS, Gomathi A, Manna AK, Late DJ, Datta R, Pati SK, Rao CNR (2010) MoS2 and WS2 analogues of graphene. Angew Chem Int Ed 49:4059–4062

    Article  Google Scholar 

  3. Enyashin A, Yadgarov L, Houben L, Popov I, Weidenbach M, Tenne R, Bar-Sadan M, Seifert G (2011) New route for stabilization of 1 T-WS2 and MoS2 phases. J Phys Chem C 115:24586–24591

    Article  CAS  Google Scholar 

  4. Bollero A, Kaupmees L, Raadik T, Grossberg M, Fernãndez S (2012) Thermal stability of sputtered Mo/polyimide films and formation of MoSe2 and MoS2 layers for application in flexible Cu(In, Ga)(Se, S)2 based solar cells. Thin Solid Films 520:4163–4168

    Article  CAS  Google Scholar 

  5. Kovalcikova A, Balko J, Balázsi C, HvizdoŠ P, Dusza J (2014) Influence of hBN content on mechanical and tribological properties of Si3N4/BN ceramic composites. J Eur Ceram Soc 34:3319–3328

    Article  CAS  Google Scholar 

  6. Bu YY, Chen ZY (2014) Effect of oxygen-doped C3N4 on the separation capability of the photoinduced electron–hole pairs generated by O-C3N4@TiO2 with quasi-shell-core nanostructure. Electrochim Acta 144:42–49

    Article  CAS  Google Scholar 

  7. Ma GF, Peng H, Mu JJ, Huang HH, Zhou XZ, Lei ZQ (2013) In situ intercalative polymerization of pyrrole in graphene analogue of MoS2 as advanced electrode material in supercapacitor. J Power Sources 229:72–78

    Article  CAS  Google Scholar 

  8. Mak KF, Lee C, Hone J, Shan J, Heinz TF (2010) Atomically thin MoS2: a new direct-gap semiconductor. Phys Rev Lett 105:136805-1–136805-4

    Article  Google Scholar 

  9. Sun HF, Chao J, Zao XL, Su S, Liu XF, Yuwen LH, Fan CH, Wang LH (2014) Gold nanoparticle-decorated MoS2 nanosheets for simultaneous detection of ascorbic acid, dopamine and uric acid. RSC Adv 4:27625–27629

    Article  CAS  Google Scholar 

  10. Merki D, Fierro S, Vrubel H, Hu XL (2011) Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water. Chem Sci 2:1262–1267

    Article  CAS  Google Scholar 

  11. Huang KJ, Wang L, Liu YJ, Liu YM, Wang HB, Gan T, Wang LL (2013) Layered MoS2-graphene composites for supercapacitor applications with enhanced capacitive performance. Int J Hydrog Energy 38:14027–14034

    Article  CAS  Google Scholar 

  12. Tsai ML, Su SH, Chang JK, Tsai DS, Chen CH, Wu C, Li LJ, Chen LJ, He JH (2014) Monolayer MoS2 heterojunction solar cells. ACS Nano 8:8317–8322

    Article  CAS  Google Scholar 

  13. Sen UK, Mitra S (2014) Improved electrode fabrication method to enhance performance and stability of MoS2-based lithium-ion battery anode. J Solid State Electrochem 18:2701–2708

    Article  CAS  Google Scholar 

  14. Gopalakrishnan D, Damien D, Shaijumon M (2014) MoS2 quantum dot-interspersed exfoliated MoS2 nanosheets. ACS Nano 8:5297–5303

    Article  CAS  Google Scholar 

  15. Xu ZR, Luo JL, Chuang KT (2009) The study of Au/MoS2 anode catalyst for solid oxide fuel cell (SOFC) using H2S-containing syngas fuel. J Power Sources 188:458–462

    Article  CAS  Google Scholar 

  16. Su S, Sun H, Xu F, Yuwen LH, Wang LH (2013) Highly sensitive and selective determination of dopamine in the presence of ascorbic acid using gold nanoparticles-decorated MoS2 nanosheets modified electrode. Electroanalysis 25:2523–2529

    Article  CAS  Google Scholar 

  17. Shanmugam M, Bansal T, Durcan C, Yu B (2012) Molybdenum disulphide/titanium dioxide nanocomposite-poly 3-hexythiophene bulk heterojunction solar cell. Appl Phys Lett 100:153901–153904

    Article  Google Scholar 

  18. Gan LY, Zhang QY, Cheng YC, Schwingenschlögl U (2014) Photovoltaic heterojunctions of fullerenes with MoS2 and WS2 monolayers. J Phys Chem Lett 5:1445–1449

    Article  CAS  Google Scholar 

  19. Xia XH, Zheng ZX, Zhang Y, Zhao XJ, Wang CM (2014) Synthesis of Ag-MoS2/chitosan nanocomposite and its application for catalytic oxidation of tryptophan. Sensors Actuators B 192:42–50

    Article  CAS  Google Scholar 

  20. Chen Y, Song B, Tang X, Lu L, Xue J (2014) Ultrasmall Fe3O4 nanoparticle/MoS2 nanosheet composites with superior performances for lithium ion batteries. Small 10:1536–1543

    Article  CAS  Google Scholar 

  21. Zhang JB, Zhao FY, Tang GS, Lin Y (2013) Influence of highly efficient PbS counter electrodeon photovoltaic performance of CdSe quantum dots-sensitized solar cells. J Solid State Electrochem 17:2909–2915

    Article  CAS  Google Scholar 

  22. Yokota H, Okazaki K, Shimura K, Nakayama M, Kim D (2012) Photoluminescence properties of self-assembled monolayers of CdSe and CdSe/ZnS quantum dots. J Phys Chem C 116:5456–5459

    Article  CAS  Google Scholar 

  23. Zhang K, Guo JK, Nie JJ, Du BY, Xu DJ (2014) Ultrasensitive and selective detection of Cu2+ in aqueous solution with fluorescence enhanced CdSe quantum dots. Sensors Actuators B 190:279–287

    Article  CAS  Google Scholar 

  24. Silva ACA, Deus SLV, Silva MJB, Dantas NO (2014) Highly stable luminescence of CdSe magic-sized quantum dots in HeLa cells. Sensors Actuators B 191:108–114

    Article  CAS  Google Scholar 

  25. Hou M, Yan XY, Xiong L (2015) Determination of sparfloxacin with CdSe/CdS quantum dots as fluorescent probes. J Lumin 157:58–62

    Article  CAS  Google Scholar 

  26. Myung N, Ding ZF, Bard AJ (2002) Electrogenerated chemiluminescence of CdSe nanocrystals. Nano Lett 2:1315–1319

    Article  CAS  Google Scholar 

  27. Myung N, Bae Y, Bard AJ (2003) Effect of surface passivation on the electrogenerated chemiluminescence of CdSe/ZnSe nanocrystals. Nano Lett 3:1053–1055

    Article  CAS  Google Scholar 

  28. Dennany L, Gerlach M, Carroll SO, Keyes TE, Forster RJ, Bertoncello P (2011) Electro- chemiluminescence (ECL) sensing properties of water soluble core-shell CdSe/ZnS quantum dots/nafion composite films. J Mater Chem 21:13984–13990

    Article  CAS  Google Scholar 

  29. Wang T, Zhang SY, Mao CJ, Song JM, Niu HN, Jin BK, Tian YP (2012) Enhanced electrochemiluminescence of CdSe quantum dots composited with graphene oxide and chitosan for sensitive sensor. Biosens Bioelectron 31:369–375

    Article  CAS  Google Scholar 

  30. Feng XM, Wang X, Xing WY, Zhou KQ, Song L, Hu Y (2014) Liquid-exfoliated MoS2 by chitosan and enhanced mechanical and thermal properties of chitosan/MoS2 composites. Compos Sci Technol 93:76–82

    Article  CAS  Google Scholar 

  31. Huang KJ, Wang L, Liu YJ, Wang HB, Liu YM, Wang LL (2013) Synthesis of polyaniline/2-dimensional graphene analog MoS2 composites for high-performance supercapacitor. Electrochim Acta 109:587–594

    Article  CAS  Google Scholar 

  32. Liu YM, Zhu M, Liu YY, Huang KJ, Cao JT, Zhang JJ, Shi GF, Chen YH (2014) A novel sandwich electrochemiluminescence aptasensor based on molybdenum disulfide nanosheet- graphene composites and Au nanoparticles for signal amplification. Anal Methods 6:4152–4157

    Article  CAS  Google Scholar 

  33. Huang KJ, Liu YJ, Liu YM, Wang LL (2014) Molybdenum disulfide nanoflower-chitosan-Au nanoparticles composites based electrochemical sensing platform for bisphenol A determination. J Hazard Mater 276:207–215

    Article  CAS  Google Scholar 

  34. Park YS, Dmytruk A, Dmitruk I, Kasuya A, Takeda M, Ohuchi N, Okamoto Y, Kaji N, Tokeshi M, Baba Y (2010) Size-selective growth and stabilization of small CdSe nanoparticles in aqueous solution. ACS Nano 4:121–128

    Article  CAS  Google Scholar 

  35. Zhao J, Zhang ZC, Yang SS, Zheng HL, Li YB (2013) Facile synthesis of MoS2 nanosheet-silver nanoparticles composite for surface enhanced Raman scattering and electrochemical activity. J Alloy Compd 559:87–91

    Article  CAS  Google Scholar 

  36. Golobostanfard MR, Abdizadeh H (2014) Tandem structured quantum dot/rod sensitized solar cell based on solvothermal synthesized CdSe quantum dots and rods. J Power Sources 256:102–109

    Article  CAS  Google Scholar 

  37. Song SY, Ni YN, Kokot S (2014) Investigations of an electrochemical platform based on the layered MoS2-graphene and horseradish peroxidase nanocomposite for direct electrochemistry and electrocatalysis. Biosens Bioelectron 56:137–143

    Article  CAS  Google Scholar 

  38. Hu XW, Mao CJ, Song JM, Niu HL, Zhang SY, Huang HP (2013) Fabrication of GO/PANi/CdSe nanocomposites for sensitive electrochemiluminescence biosensor. Biosens Bioelectron 41:372–378

    Article  CAS  Google Scholar 

  39. Medintz L, Pons T, Trammell S, Grimes A, English D, Blanco-Canosa J, Dawson P, Mattoussi H (2008) Interactions between redox complexes and semiconductor quantum dots coupled via a peptide bridge. J Am Chem Soc 130:16745–16756

    Article  CAS  Google Scholar 

  40. Shim M, Wang CJ, Sionnest PJ (2001) Charge-tunable optical properties in colloidal semiconductor nanocrystals. J Phys Chem B 105:2369–2373

    Article  CAS  Google Scholar 

  41. Liu WH, He SL, Wang Y, Dou Y, Pan DJ, Feng Y, Qian G, Xu JZ, Miao SD (2014) PEG-assisted synthesis of homogeneous carbon nanotubes-MoS2-carbon as a counter electrode for dye-sensitized solar cells. Electrochim Acta 144:119–126

    Article  CAS  Google Scholar 

  42. Feng HX, Wang B, Tan L, Chen NL, Wang NX, Chen BY (2014) Polypyrrole/hexadecyl- pyridinium chloride-modified graphite oxidecomposites: fabrication, characterization, and application in supercapacitors. J Power Sources 246:621–628

    Article  CAS  Google Scholar 

  43. Chang Z, Zheng XW (2006) Highly sensitive electrogenerated chemiluminescence (ECL) method for famotidine with pre-anodizing technique to improve ECL reaction microenvironment at graphite electrode surface. J Electroanal Chem 587:161–168

    Article  CAS  Google Scholar 

  44. Deng SY, Ju HX (2013) Electrogenerated chemiluminescence of nanomaterials for bioanalysis. Analyst 138:43–61

    Article  CAS  Google Scholar 

  45. Jie GF, Huang HP, Sun XL, Zhu JJ (2008) Electrochemiluminescence of CdSe quantum dots for immunosensing of human prealbumin. Biosens Bioelectron 23:1896–1899

    Article  CAS  Google Scholar 

  46. Liang H, Song DD, Gong JM (2014) Signal-on electrochemiluminescence of biofunctional CdTe quantum dots for biosensing of organophosphate pesticides. Biosens Bioelectron 53:363–369

    Article  CAS  Google Scholar 

  47. Wen YQ, Luo FL, Yang YL, Lin L, Du J, Guo Y, Xiao D, Choi M (2012) CdS nanotubes thin film for electrochemiluminescence analysis of phenolic compounds. Anal Methods 4:1053–1059

    Article  CAS  Google Scholar 

  48. Mao CJ, Chen XB, Niu HL, Song JM, Zhang SY, Cui RJ (2012) A novel enzymatic hydrogen peroxide biosensor based on Ag/C nanocables. Biosens Bioelectron 31:544–547

    Article  CAS  Google Scholar 

  49. Liu X, Jiang H, Lei JP, Ju HX (2007) Anodic electrochemiluminescence of CdTe quantum dots and its energy transfer for detection of catechol derivatives. Anal Chem 79:8055–8060

    Article  CAS  Google Scholar 

  50. Wang QM, Niu HL, Mao CY, Song JM, Zhang SY (2014) Facile synthesis of trilaminar core-shell Ag@C@Ag nanospheres and their application for H2O2 detection. Electrochim Acta 127:349–354

    Article  CAS  Google Scholar 

  51. Chu HH, Wei XH, Wu MS, Yan JL, Tu YF (2012) An electrochemiluminescent biosensor based on polypyrrole immobilized uricase for ultrasensitive uric acid detection. Sensors Actuators B 163:247–252

    Article  CAS  Google Scholar 

  52. Yan HL, Xiao HL, Xie QJ, Liu JL, Sun LG, Zhou YP, Zhang Y, Chao L, Chen C, Yao SZ (2015) Simultaneous electroanalysis of isoniazid and uric acid at poly(sulfosalicylic acid)/electroreduced carboxylated graphene modified glassy carbon electrode. Sensors Actuators B 207:167–176

    Article  CAS  Google Scholar 

  53. Kannan P, John SA (2009) Determination of nanomolar uric and ascorbic acids using enlarged gold nanoparticles modified electrode. Anal Biochem 386:65–72

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Support for this work from the National Natural Science Foundation of China (Nos. 21275006, 21471001, 20905001, 21071002, 21175001, 21271004) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengyi Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ke, R., Zhang, X., Wang, L. et al. Enhanced electrochemiluminescence of CdSe quantum dots coupled with MoS2-chitosan nanosheets. J Solid State Electrochem 19, 1633–1641 (2015). https://doi.org/10.1007/s10008-015-2793-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-2793-z

Keywords

Navigation