Skip to main content
Log in

Contact probe electrochemical characterization and metal speciation of silver LLDPE nanocomposite films

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A contact probe methodology, based on the voltammetry of immobilized microparticle approach, is used for characterizing silver species present in linear low density polyethylene (LLDPE) films with different Ag(I)/Ag(0) ratios and silver nanoparticle features usable as food contact polymers. The films displayed characteristic voltammetric features in contact with aqueous acetate buffer, in particular signals for the stripping oxidation of nanoparticulate Ag systems. Significant differences between the studied films were also observed by means of electrochemical impedance spectroscopy and detected at the nanoscopic scale using electrochemical scanning microscopy. Differences in optical and thermal properties of the studied films are associated with the presence of silver nanoparticles. The silver oxidation state as well as nanoparticle size also had influence on the oxidative resistance of the LLDPE films; indeed, films containing cationic silver showed the lowest oxidation induction time value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Schierholz JM, Lucas LJ, Rump A, Pulverer G (1998) J Hosp Infect 40:257–262

    Article  CAS  Google Scholar 

  2. López-Carballo G, Higueras L, Gavara R, Hernández-Muñoz P (2013) J Agric Food Chem 61:260–267

    Article  Google Scholar 

  3. Rhim JW, Wang LF, Hong SI (2013) Food Hydrocoll 33:327–335

    Article  CAS  Google Scholar 

  4. Llorens A, LLoret E, Picouet PA, Trbojevich R, Fernández A (2012) Trends Food Sci Technol 22:19–29

    Article  Google Scholar 

  5. Boschetto DL, Lerin L, Cansian R, Pergher SBC, di Lucio M (2012) Chem Eng J 204–206:210–216

    Article  Google Scholar 

  6. Fortunati E, Armentano I, Zhou Q, Iannoni A, Saino E, Visai L, Berglund LA, Kenny JM (2012) Carbohyd Polym 87:1596–1605

    Article  CAS  Google Scholar 

  7. de Moura MR, Mattoso LHC, Zucolotto V (2012) J Food Eng 109:520–524

    Article  Google Scholar 

  8. Zapata PA, Tamayo L, Páez M, Cerda E, Azócar I, Rabagliati FM (2011) Eur Polym J 47:1541–1549

    Article  CAS  Google Scholar 

  9. Duncan TV (2011) J Colloid Interface Sci 363:1–24

    Article  CAS  Google Scholar 

  10. Duran N, Marcarto PD, De Souza GIH, Alves OL, Esposito E (2007) J Biomed Nanotechnol 3:203–208

    Article  CAS  Google Scholar 

  11. Henglein A (1998) Chem Mater 10:444–1450

    Article  CAS  Google Scholar 

  12. Lok C, Ho CM, Chen R, He QY, Yu WY, Sun H, Tam PK, Chiu SF, Che CM (2007) J Biol Inorg Chem 12:527–534

    Article  CAS  Google Scholar 

  13. Zhang Y, Zhang K, Ma H (2009) Anal Biochem 387:13–19

    Article  CAS  Google Scholar 

  14. Sun D, Hu W, Ma W (2011) J Anal Chem 66:310–316

    Article  CAS  Google Scholar 

  15. Chao M, Ma X (2012) Int J Electrochem Sci 7:6331–6342

    CAS  Google Scholar 

  16. Filippo E, Serra A, Manno D (2009) Sensors Actuators B 138:625–630

    Article  CAS  Google Scholar 

  17. Szunerits S, Boukherroub R (2012) Chem Commun 48:8999–9010

    Article  CAS  Google Scholar 

  18. Martínez-Abad A, Sánchez G, Lagarón JM, Ocio MJ (2013) Colloid Polym Sci 291:1381–1392

    Article  Google Scholar 

  19. Ramstedt M, Franklyn P (2010) Surf Interface Anal 42:855–858

    Article  CAS  Google Scholar 

  20. Compton J, Thompson D, Kranbuehl D, Ohl S, Gain O, David L, Espuche E (2006) Polymer 47:5303–5313

    Article  CAS  Google Scholar 

  21. Hodko D, Gamboa-Aldeco M, Murphy OJ (2009) J Solid State Electrochem 13:1063–1075

    Article  CAS  Google Scholar 

  22. Hodko D, Gamboa-Aldeco M, Murphy OJ (2009) J Solid State Electrochem 13:1077–1089

    Article  CAS  Google Scholar 

  23. Scholz F, Schröder U, Gulabowski R (2005) Electrochemistry of immobilized particles and droplets. Springer, Berlin

    Google Scholar 

  24. Doménech-Carbó A, Labuda J, Scholz F (2013) Pure Appl Chem 85:609–632

    Google Scholar 

  25. Doménech-Carbó A, Doménech-Carbó MT, Martínez I (2010) Anal Chim Acta 610:1–9

    Article  Google Scholar 

  26. Chatterjee A, Wiltshire R, Holt KB, Compton RG, Foord JS, Marken F (2002) Diamond Relat Mater 11:646–650

    Article  CAS  Google Scholar 

  27. Cepriá G, Roque J, Molera J, Pérez-Arantegui J, Vendrell M (2007) Electroanalysis 19:1167–1176

    Article  Google Scholar 

  28. Doménech-Carbó A, Doménech-Carbó MT, Pasíes T, Bouzas MC (2011) Electroanalysis 23:2803–2812

    Article  Google Scholar 

  29. Redmon PL, Hallock AJ, Brus LE (2005) Nano Lett 5:131–135

    Article  Google Scholar 

  30. Brainina KZ, Galperin LG, Kiryuhina TY, Galperin AL, Stozhko NY, Murzakaev AM, Timoshenkova OR (2012) J Solid State Electrochem 16:2365–2372

    Article  CAS  Google Scholar 

  31. Zhou YG, Rees NV, Compton RG (2013) Angew Chem Int Ed 50:4219–4221

    Article  Google Scholar 

  32. Levi MD, Gofer Y, Aurbach D, Berlin A (2004) Electrochim Acta 49:433–444

    Article  CAS  Google Scholar 

  33. Pauliukaite R, Ghica ME, Barsan M, Brett CMA (2007) J Solid State Electrochem 11:899–908

    Article  CAS  Google Scholar 

  34. Galal A, Darwish SA, Ahmed RA (2007) J Solid State Electrochem 11:531–542

    Article  CAS  Google Scholar 

  35. Inzelt G (2008) Conducting polymers. A new era in electrochemistry (Monographs in electrochemistry series, Scholz F, Edit). Springer, Berlin

    Google Scholar 

  36. Bard AJ, Mirkin MV (2003) Scanning electrochemical microscopy. Taylor & Francis, Boca Raton

    Google Scholar 

  37. Guadagnini L, Maljusch A, Chen X, Neugebauer S, Tonelli D, Schumann W (2009) Electrochim Acta 54:3753–3758

    Article  CAS  Google Scholar 

  38. Santana JJ, González-Guzmán J, Fernández-Mérida L, González S, Souto RM (2010) Electrochim Acta 55:4488–4494

    Article  CAS  Google Scholar 

  39. Denhavi AS, Aroujalian A, Raisi A, Fazel S (2013) J Appl Polym Sci 127:1180–1190

    Article  Google Scholar 

  40. McGuire RG (1992) Hortic Sci 27:1254–1255

    Google Scholar 

  41. Henglein A (1998) Chem Mater 10:444–450

    Article  CAS  Google Scholar 

  42. Hoskins JS, Karanfil T, Serkiz SM (2002) Environ Sci Technol 36:784–789

    Article  CAS  Google Scholar 

  43. He Q, Yuan T, Zhu J, Luo Z, Haldolaarachchige N, Sun L, Khasanov A, Li Y, Young DP, Wei S, Guo Z (2012) Polymer 53:3642–3652

    Article  CAS  Google Scholar 

  44. Simanke AG, Galland GB, Freitas L, da Jornada JAH, Quijada R, Mauler RS (1999) Polymer 40:5489–5495

    Article  CAS  Google Scholar 

  45. Borah JS, Chaki TK (2011) J Polym Res 18:569–578

    Article  CAS  Google Scholar 

  46. Baum B (1959) J Appl Polym Sci 2:281–288

    Article  CAS  Google Scholar 

  47. Lovric M, Scholz F (1997) J Solid State Electrochem 1:108–113

    Article  CAS  Google Scholar 

  48. Schröder U, Oldham KB, Myland JC, Mahon PJ, Scholz F (2000) J Solid State Electrochem 4:314–324

    Article  Google Scholar 

  49. Doménech-Carbó A, Doménech-Carbó MT (2006) J Solid State Electrochem 10:949–958

    Article  Google Scholar 

  50. Brainina KZ, Vydrevich MB (1981) J Electroanal Chem 121:1–28

    Article  CAS  Google Scholar 

  51. Guntsov AV (2012) J Solid State Electrochem 16:2309–2314

    Article  CAS  Google Scholar 

  52. Brainina KZ, Galperin LG, Vikulova EV (2012) J Solid State Electrochem 16:2357–2363

    Article  CAS  Google Scholar 

  53. Chevallier FG, Goodwin A, Banks CE, Jiang L, Jones TGJ, Compton RG (2006) J Solid State Electrochem 10:857–864

    Article  CAS  Google Scholar 

  54. Jones SEW, Chevallier FG, Paddon CA, Compton RG (2007) Anal Chem 79:4110–4119

    Article  Google Scholar 

  55. Ivanova OS, Zamborini FP (2010) J Am Chem Soc 132:70–72

    Article  CAS  Google Scholar 

  56. Jiang J, Kucernak A (2001) J Electroanal Chem 514:1–15

    Article  CAS  Google Scholar 

  57. Bobacka J, Lewenstam A, Ivaska A (2000) J Electroanal Chem 489:17–27

    Article  CAS  Google Scholar 

  58. Chen G, Waraksa CC, Cho H, Macdonald DD, Mallouk TE (2003) J Electrochem Soc 150:E423–E428

    Article  CAS  Google Scholar 

  59. Lee S-J, Pyun S-I (2007) J Solid State Electrochem 11:829–839

    Article  CAS  Google Scholar 

  60. Venkatram MS, Cole IS, Emmanuel B (2011) Electrochim Acta 56:8192–8203

    Article  Google Scholar 

  61. Hirschom B, Orazem ME, Tribollet B, Vivier V, Frateur I, Musiani M (2010) Electrochim Acta 55:6218–6227

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Spanish Ministry of Science and Innovation for financial support through projects INGENIO-CONSOLIDER CSD2007-00063, AGL-2012-39920-C03-01, and CTQ2011-28079-C03-02, supported by ERDF funds, and Mr. Tim Swillens (translation services). I.D. thanks the CSIC for the postdoctoral contract concession.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Irene Domínguez or Antonio Doménech-Carbó.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 134 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Domínguez, I., Doménech-Carbó, A., Cerisuelo, J.P. et al. Contact probe electrochemical characterization and metal speciation of silver LLDPE nanocomposite films. J Solid State Electrochem 18, 2099–2110 (2014). https://doi.org/10.1007/s10008-014-2453-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2453-8

Keywords

Navigation