Skip to main content
Log in

Effect of supports on activity and stability of Pt–Pd catalysts for oxygen reduction reaction in proton exchange membrane fuel cells

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The platinum–palladium alloy (Pt–Pd) catalysts were prepared on various supports including Vulcan XC72, Hicon Black (HB), multiwalled carbon nanotubes (MWCNTs), and titanium dioxide (TiO2) by a combined approach of impregnation and seeding using NaBH4 reduction at low temperature. Their oxygen reduction reaction (ORR) activities in single proton exchange membrane fuel cell (PEMFC) under a H2/O2 environment and their stability in an acid electrolyte (0.5 M H2SO4) were tested and compared with the Vulcan XC72-supported Pt (Pt/C) catalysts. The presence of the Pd metal as well as different types of supports affected the ORR activity in H2/O2 environment and stability in the acid electrolyte. Overall, the HB-supported Pt–Pd (Pt–Pd/HB) catalysts provided the highest current density at 0.6 V under a H2/O2 environment, while the MWCNT-supported Pt–Pd (Pt–Pd/MWCNT) catalyst provided the best stability in an acid electrolyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hasani-Sadrabadi MM, Emami SH, Ghaffarian R, Moaddel H (2008) Energ Fuels 22:2539–2542

    Article  CAS  Google Scholar 

  2. Tang Y, Yuan W, Pan M, Li Z, Chen G, Li Y (2010) Appl Energ 87:1410–1417

    Article  CAS  Google Scholar 

  3. Zhang X, Guo J, Chen J (2010) Energy 35:5294–5299

    Article  CAS  Google Scholar 

  4. Norskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, Jónsson H (2004) J Phys Chem B 108:17886–17892

    Article  CAS  Google Scholar 

  5. Trongchuankij W, Poochinda K, Pruksathorn K, Hunsom M (2010) Renew Energy 12:2839–2843

    Article  Google Scholar 

  6. Department of Energy (2007) Technical targets: catalysts for transportation applications. Department of Energy—Multi Year Research and Development Plan

  7. Zhang J, Mo Y, Vukmirovic MB, Klie R, Sasaki K, Adzic RR (2004) J Phys Chem B 108:10955–10964

    Article  CAS  Google Scholar 

  8. Sasaki K, Naohara H, Cai Y, Choi M, Liu P, Vukmirovic MB, Wang JX, Adzic RR (2010) Angew Chem Int Ed 49:8602–8607

    Article  CAS  Google Scholar 

  9. Leelaruji K, Hunsom M (2010) Renew Energy 35:2422–2430

    Article  CAS  Google Scholar 

  10. Zignani SC, Antolini E, Gonzalez ER (2009) J Power Sources 191:344–350

    Article  CAS  Google Scholar 

  11. Oezaslan M, Hasché F, Strasser P (2010) ECS Trans 33:333–341

    Article  CAS  Google Scholar 

  12. Hasché F, Oezaslan M, Strasser P (2010) Phys Chem Chem Phys 12:15251–15258

    Article  Google Scholar 

  13. Trongchuankij W, Pruksathorn K, Hunsom M (2011) Appl Energy 88:974–980

    Article  CAS  Google Scholar 

  14. Thanasilp S, Hunsom M (2011) Electrochim Acta 56:1164–1171

    Article  CAS  Google Scholar 

  15. Saha MS, Li R, Cai M, Sun X (2008) J Power Sources 185:1079–1085

    Article  CAS  Google Scholar 

  16. Gasteiger HA, Markovic NM (2009) Science 324:48–49

    Article  CAS  Google Scholar 

  17. Mani P, Srivastava R, Strasser P (2011) J Power Sources 196:666–673

    Article  CAS  Google Scholar 

  18. Dicks AL (2006) J Power Sources 156:128–141

    Article  CAS  Google Scholar 

  19. Shao Y, Yin G, Zhang J, Gao Y (2006) Electrochim Acta 1:5853–5857

    Article  Google Scholar 

  20. Li W, Waje M, Chen Z, Larsen P, Yan Y (2010) Carbon 48:995–1003

    Article  CAS  Google Scholar 

  21. Hsin YL, Hwang KC, Yeh CT (2007) J Am Chem Soc 129:9999–10010

    Article  CAS  Google Scholar 

  22. Maiyalagan T (2009) J Solid State Electrochem 13:1561–1566

    Article  CAS  Google Scholar 

  23. Zhou Y, Neyerlin K, Olson TS, Pylypenko S, Bult J, Dinh HN, Gennett T, Shao Z, O’Hayre R (2010) Energy Environ Sci 3:1437–1446

    Article  CAS  Google Scholar 

  24. Antolini E (2012) Appl Cat B 123–124:52–68

    Article  Google Scholar 

  25. Xin Y, Liu J, Zhou Y, Liu W, Gao J, Xie Y, Yin Y, Zou Z (2011) J Power Sources 196:1012–1018

    Article  CAS  Google Scholar 

  26. Yoo E, Okada T, Akita T, Kohyama M, Honma I, Nakamura J (2011) J Power Sources 196:110–115

    Article  CAS  Google Scholar 

  27. He W, Jiang H, Zhou Y, Yang S, Xue X, Zou Z, Zhang X, Akins DL, Yang H (2012) Carbon 50:265–274

    Article  CAS  Google Scholar 

  28. Huang SY, Ganesan P, Popov BN (2011) Appl Catal, B 102:71–77

    Article  CAS  Google Scholar 

  29. Yin S, Mu S, Lv H, Cheng N, Pan M, Fu Z (2010) Appl Catal, B 93:233–240

    Article  CAS  Google Scholar 

  30. Zhang P, Huang SY, Popov BN (2010) J Electrochem Soc 157:B1163–B1172

    Article  CAS  Google Scholar 

  31. Chhina H, Campbell S, Kesler O (2007) J Electrochem Soc 154:B533–B539

    Article  CAS  Google Scholar 

  32. Fujishima A, Hashimoto K, Watanabe T (1999) TiO2, photocatalysis, fundamentals and applications. BKC, Inc., Tokyo

    Google Scholar 

  33. Leroux F, Dewar PJ, Intissar M, Ouvrard G, Nazar LF (2002) J Mater Chem 12:3245–3253

    Article  CAS  Google Scholar 

  34. Ungar T, Gubieza J, Tichy G, Pantea C, Zerda TW (2005) Compos Part A-Appl S 36:431–436

    Article  Google Scholar 

  35. Huang SY, Ganesan P, Popov BN (2010) Appl Catal, B 96:224–231

    Article  CAS  Google Scholar 

  36. Lopes T, Antolini E, Gonzalez ER (2008) Int J Hydrogen Energy 33:5563–5570

    Article  CAS  Google Scholar 

  37. Wang ZB, Yin GP, Shi PF, Sun YC (2006) Electrochem Solid-State Lett 9:A13–A15

    Article  CAS  Google Scholar 

  38. Van Der Klink JJ (1999) Adv Catal 44:1–117

    Article  Google Scholar 

  39. Sepulveda-Escribano A, Coloma F, Rodriguez-Reinoso F (1998) Appl Catal A 173:247–257

    Article  CAS  Google Scholar 

  40. Guerrero-Ruiz A, Badenes P, Rodriguez-Ramos I (1998) Appl Catal A 173:313–321

    Article  CAS  Google Scholar 

  41. Fraga MA, Jordao E, Mendes MJ, Freitas MMA, Faria JL, Figueiredo JL (2002) J Catal 209:355–364

    Article  CAS  Google Scholar 

  42. Escobar J, Barrera MC, Reyes JA, Toledo JA, Santes V, Colín JA (2008) J Mol Catal A 287:33–40

    Article  CAS  Google Scholar 

  43. Garg S, Soni K, Kumaran GM, Kumar M, Gupta JK, Sharma LD, Dhar GM (2008) Catal Today 130:302–308

    Article  CAS  Google Scholar 

  44. Antolini E, Salgado JRC, Giz MJ, Gonzalez ER (2005) Int J Hydrogen Energy 30:1213–1220

    Article  CAS  Google Scholar 

  45. Paffett MT, Berry GJ, Gottesfeld S (1988) J Electrochem Soc 135:1431–1436

    Article  CAS  Google Scholar 

  46. Beard BC, Ross PN (1990) J Electrochem Soc 137:3368–3374

    Article  CAS  Google Scholar 

  47. Toda T, Igarashi H, Uchida H, Watanabe M (1999) J Electrochem Soc 146:3750–3756

    Article  CAS  Google Scholar 

  48. Jeon MK, Zhang Y, McGinn PJ (2010) Electrochim Acta 55:5318–5325

    Article  CAS  Google Scholar 

  49. Colón-Mercado HR, Kim H, Popov BN (2004) Electrochem Com 6:795–799

    Article  Google Scholar 

  50. Colón-Mercado HR, Popov BN (2006) J Power Sources 155:253–263

    Article  Google Scholar 

  51. Wu H, Wexler D, Wang G (2009) J Alloys Comp 488:195–198

    Article  CAS  Google Scholar 

  52. Cho YH, Jeon TY, Lim JW, Cho YH, Ahnb M, Jung N, Yoo SJ, Yoon WS, Sung YE (2011) Int J Hydrogen Energy 36:4394–4399

    Article  CAS  Google Scholar 

  53. Ferreira PJ, la O’ GJ, Shao-Horn Y, Morgan D, Makharia R, Kocha S (2005) J Electrochem Soc 152:A2256–A2271

    Article  Google Scholar 

  54. Cho YH, Choi B, Cho YH, Park HS, Sung YE (2007) Electrochem Com 9:378–381

    Article  CAS  Google Scholar 

  55. Calvillo M, Gangeri M, Perathoner S, Centi G, Moliner R, Lázaro MJ (2011) Int J Hydrogen Energy 36:9805–9814

    Article  CAS  Google Scholar 

  56. Prentice G (1991) Electrochemical engineering principles. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  57. Lobato J, Cañizares P, Rodrigo MA, Linares JJ (2007) Electrochim Acta 52:3910–3920

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Integrated Innovation Academic Center: IIAC Chulalongkorn University Centenary Academic Development Project, the CU Graduate School Thesis Grant for financial support. Also, this work was partially supported by the Higher Education Research Promotion and National Research University Project of Thailand, Office of the Higher Education Commission (Project code: 276). The Thai Government Stimulus Package 2 (TKK2555), under the Project for Establishment of a Comprehensive Center for Innovative Food, Health Products and Agriculture, is thanked for facility support. Also, we thank the Publication Counseling Unit (PCU) of the Faculty of Science, Chulalongkorn University and Dr. Robert D.J. Butcher for comments, suggestions, and checking the grammar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mali Hunsom.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Limpattayanate, S., Hunsom, M. Effect of supports on activity and stability of Pt–Pd catalysts for oxygen reduction reaction in proton exchange membrane fuel cells. J Solid State Electrochem 17, 1221–1231 (2013). https://doi.org/10.1007/s10008-012-1991-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-012-1991-1

Keywords

Navigation