Skip to main content
Log in

Preparation and characterization of blended solid polymer electrolyte 49% poly(methyl methacrylate)-grafted natural rubber:poly(methyl methacrylate)–lithium tetrafluoroborate

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The preparation and characterization of blended solid polymer electrolyte 49% poly(methyl methacrylate)-grafted natural rubber (MG49):poly(methyl methacrylate) (PMMA) (30:70) were carried out. The effect of lithium tetrafluoroborate (LiBF4) concentration on the chemical interaction, structure, morphology, and room temperature conductivity of the electrolyte were investigated. The electrolyte samples with various weight percentages (wt.%) of LiBF4 salt were prepared by solution casting technique and characterized by Fourier transform infrared spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and electrochemical impedance spectroscopy. Infrared analysis demonstrated that the interaction between lithium ions and oxygen atoms occurred at symmetrical stretching of carbonyl (C=O) (1,735 cm−1) and asymmetric deformation of (O–CH3) (1,456 cm−1) via the formation of coordinate bond on MMA structure in MG49 and PMMA. The reduction of MMA peaks intensity at the diffraction angle, 2θ of 29.5° and 39.5° was due to the increase in weight percent of LiBF4. The complexation occurred between the salt and polymer host had been confirmed by the XRD analysis. The semi-crystalline phase of polymer host was found to reduce with the increase in salt content and confirmed by XRD analysis. Morphological studies by SEM showed that MG49 blended with PMMA was compatible. The addition of salt into the blend has changed the topological order of the polymer host from dark surface to brighter surface. The SEM analyses supported the enhancement of conductivity with the addition of salt. The conductivity increased drastically from 2.0 to 3.4 × 10−5 S cm−1 with the addition of 25 wt.% of salt. The increase in the conductivity was due to the increasing of the number of charge carriers in the electrolyte. The conductivity obeys Arrhenius equation in higher temperature region from 333 to 373 K with the pre-exponential factor σ o of 1.21 × 10−7 S cm−1 and the activation energy E a of 0.46 eV. The conductivity is not Arrhenian in lower temperature region from 303 to 323 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chu PP, Reddy JM (2003) J Power Sources 115:288–294

    Article  CAS  Google Scholar 

  2. Fenton DE, Parker JM, Wright PV (1973) Polymer 14:589

    Article  CAS  Google Scholar 

  3. Chen YT, Chuang YC, Su JH, Yu HC, Chen-Yang YW (2011) J Power Sources 196:2802–2809

    Article  CAS  Google Scholar 

  4. Rajendran S, Prabhu MR, Rani MU (2008) J Power Sources 180:880

    Article  CAS  Google Scholar 

  5. Nair JR, Gerbaldi C, Destro M, Bongiovanni R, Penazzi N (2011) React Funct Polym 71:409

    Article  CAS  Google Scholar 

  6. Stephan AM, Nahm KS (2006) Polymer 47:5952

    Article  CAS  Google Scholar 

  7. Fergus JW (2010) J Power Sources 195:4554

    Article  CAS  Google Scholar 

  8. Ahmad Sh, Ahmad Sf, Agnihotry SA (2004) J Power Sources 140:151–156

    Article  Google Scholar 

  9. Chen HW, Lin TP, Chang FC (2002) Polymer 43:5281–5288

    Article  CAS  Google Scholar 

  10. Ahmad A, Rahman MYA, Ali MLM, Hashim H, Kalam FA (2007) Ionics 13:67–70

    Article  CAS  Google Scholar 

  11. Rajendran S, Mahendran O, Kannan R (2002) Fuel 81:1077–1081

    Article  CAS  Google Scholar 

  12. Benedict TJ, Banumathi S, Veluchamy A, Gangadharan R, Ahmad AZ, Rajendran S (1998) J Power Sources 75:171–174

    Article  CAS  Google Scholar 

  13. Idris R, Glasse MD, Latham RJ, Linford RG, Schlindwein WS (2000) J Power Sources 94:206–211

    Article  Google Scholar 

  14. Park JW, Jeong ED, Won MS, Shim YB (2006) J Power Sources 160:674–680

    Article  CAS  Google Scholar 

  15. Li W, Yang M, Yuan M, Tang Z, Zhang JQ (2007) J Appl Polym Sci 106:3084–3090

    Article  CAS  Google Scholar 

  16. Wang XJ, Kang JJ, Wu YP, Fang FB (2003) Electrochem Commun 5:1025–1029

    Google Scholar 

  17. Latif F, Aziz AM, Katun N, Ali AMM, Yahya MZA (2006) J Power Sources 159:1401–1404

    Article  CAS  Google Scholar 

  18. Alias Y, Ling I, Kumutha K (2005) Ionics 11:414–417

    Article  CAS  Google Scholar 

  19. Kumutha K, Alias Y, Said R (2005) Ionics 11:472–476

    Article  CAS  Google Scholar 

  20. Kumutha K, Alias Y (2006) Spectrochim Acta Part A 64:442–447

    Article  CAS  Google Scholar 

  21. Ali AMM, Yahya MZA, Bahron H, Subban RHY (2006) Ionics 12:303–307

    Article  CAS  Google Scholar 

  22. Ali AMM, Subban RHY, Bahron H, Winie T, Latif F, Yahya MZA (2008) Ionics 14:491–500

    Article  CAS  Google Scholar 

  23. Su’ait MS, Ahmad A, Hamzah H, Rahman MYA (2009) J Phys D: Appl Phys 42:055410

    Article  Google Scholar 

  24. Rajendran S, Uma T, Mahalingam T (1999) Ionics 5:232–235

    Article  CAS  Google Scholar 

  25. Pavia DL, Lampman GM, Kriz GS (2001) Introduction to spectroscopy. Brooks/Cole, USA

    Google Scholar 

  26. Skoog DA, Holler FJ, Nieman TA (1998) Principle of instrumental analysis. Saunders College Publishing and Harcourt Brace College Publishing, CA, USA

    Google Scholar 

  27. Reddy MJ, Chu PP, Rao UVS (2006) J Power Sources 158:614–619

    Article  CAS  Google Scholar 

  28. Subban RHY, Arof AK (2003) J New Mater Electrochem Syst 6:197–203

    CAS  Google Scholar 

  29. Baskaran R, Selvasekarapandian S, Kuwata N, Kawamura J, Hattori T (2006) Solid State Ionics 177:2679–2682

    Article  CAS  Google Scholar 

  30. Ahmad A, Lien PC, Su’ait MS (2010) Sains Malaysiana 39:65–71

    CAS  Google Scholar 

  31. Su’ait MS, Ahmad A, Hamzah H, Rahman MYA (2009) Ionics 15:497–500

    Article  Google Scholar 

  32. Loupy A, Tchoudar B (1991) Salts effects in organic and organic metallic chemistry. VCH, New York

    Google Scholar 

  33. Whang WT, Yang LH, Fan YW (1994) J Appl Polym Sci 54:923–933

    Article  CAS  Google Scholar 

  34. Bruce PG (2005) Solid State Science 7: 1456–1463

    Google Scholar 

  35. Chew (2005) Kajian Kekonduksian Ionik Terhadap Adunan Elektrolit Polimer PVC-ENR dan PVdf-ENR. Thesis M.Sc Universiti Teknologi Malaysia, Malaysia

    Article  CAS  Google Scholar 

  36. Noor SAM, Ahmad A, Talib IA, Rahman MYA (2010) Ionics 16: 161–170

    Article  CAS  Google Scholar 

  37. Othman L, Chew KW, Osman Z (2007) Ionics 13:337–342

    Article  CAS  Google Scholar 

  38. Rahman MYA, Ahmad A, Wahab SA (2009) Ionics 15:221–225

    Google Scholar 

  39. Su'ait MS, Ahmad A, Hamzah H, Rahman MYA (2011) Electrochim Acta 57: 123–131

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to extend their gratitude towards Universiti Kebangsaan Malaysia for allowing this research to be carried out. This work is supported by the MOSTI grant 03-01-02-SF0423.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Ahmad or M. Y. A. Rahman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su’ait, M.S., Noor, S.A.M., Ahmad, A. et al. Preparation and characterization of blended solid polymer electrolyte 49% poly(methyl methacrylate)-grafted natural rubber:poly(methyl methacrylate)–lithium tetrafluoroborate. J Solid State Electrochem 16, 2275–2282 (2012). https://doi.org/10.1007/s10008-011-1637-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-011-1637-8

Keywords

Navigation