Skip to main content
Log in

Nano-sized La0.8Sr0.2MnO3 as oxygen reduction catalyst in nonaqueous Li/O2 batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Nano-sized La0.8Sr0.2MnO3 prepared by the polyethylene glycol assisting sol–gel method was applied as oxygen reduction catalyst in nonaqueous Li/O2 batteries. The as-synthesized La0.8Sr0.2MnO3 was characterized by X-ray diffraction (XRD), scanning electron microscopy, and Brunauer–Emmet–Teller measurements. The XRD results indicate that the sample possesses a pure perovskite-type crystal structure, even sintered at a temperature as low as 600 °C, whereas for solid-state reaction method it can only be synthesized above 1,200 °C. The as-prepared nano-sized La0.8Sr0.2MnO3 has a specific surface area of 32 m2 g−1, which is much larger than the solid-state one (1 m2 g−1), and smaller particle size of about 100 nm. Electrochemical results show that the nano-sized La0.8Sr0.2MnO3 has better catalytic activity for oxygen reduction, higher discharge plateau and specific capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ogasawara T, Debart A, Holzapfel M, Novak P, Bruce PG (2006) J Am Chem Soc 128:1390–1393

    Article  CAS  Google Scholar 

  2. Gachot G, Grugeon S, Armand M, Pilard S, Guenot P, Tarascon JM, Laruelle S (2008) J Power Sources 178:409–421

    Article  CAS  Google Scholar 

  3. Amalraj SF, Aurbach D (2011) J Solid State Electrochem 15:877–890

    Article  CAS  Google Scholar 

  4. Leriche JB, Hamelet S, Shu J, Morcrette M, Masquelier C, Ouvrard G, Zerrouki M, Soudan P, Belin S, Elkaïm E, Baudelet F (2010) J Electrochem Soc 157:A606–A610

    Article  CAS  Google Scholar 

  5. Jian Z, Wu X, Xiao H (2010) J Electrochem Soc 157:A940–A946

    Article  Google Scholar 

  6. Abraham KM, Jiang Z (1996) J Electrochem Soc 143:1–5

    Article  CAS  Google Scholar 

  7. Girishkumar, McCloskey B, Luntz AC, Swanson S, Wilcke W (2010) J Phys Chem Lett 1:2193–2203

    Article  CAS  Google Scholar 

  8. Kraytsberg A, Eli YE (2011) J Power Sources 196:886–893

    Article  CAS  Google Scholar 

  9. Laoire CO, Mukerjee S, Abraham KM (2010) J Phys Chem C 114:9178–9186

    Article  CAS  Google Scholar 

  10. Debart A, Bao JL, Armstrong G, Bruce PG (2007) J Power Sources 174:1177–1182

    Article  CAS  Google Scholar 

  11. Debart A, Bao JL, Armstrong G, Bruce PG (2008) Angew Chem Int Ed 47:4521–4524

    Article  CAS  Google Scholar 

  12. Lu YC, Xu Z, Gasteiger HA, Chen S, Schifferli KH, Yang SH (2010) J Am Chem Soc 132:12170–12171

    Article  CAS  Google Scholar 

  13. Ren X, Zhang SS, Tran DT, Read J (2011) J Mater Chem (in press)

  14. Ohsaka T, Lanqun M, Arihara K, Sotomura T (2004) Electro Chem 6:273–277

    Article  CAS  Google Scholar 

  15. Singh RN, Malviya M, Anindita, Sinba ASK, Chartier P (2007) Electrochim Acta 52:4264–4271

    Article  CAS  Google Scholar 

  16. Sequeira CAC, Santos DMF, Brito PSD (2008) Russion J Electrochem 44:919–923

    Google Scholar 

  17. Hu ZG, Yang YY, Shang XL, Pang HL (2005) Mater Lett 59:1373–1377

    Article  CAS  Google Scholar 

  18. Lu YC, Gasteiger HA, Crumlin E, McGuire R Jr, Yang SH (2010) J Electrochem Soc 157:A1016–A1025

    Article  CAS  Google Scholar 

  19. Kang JW, Kim DH, Mathew V, Lim JS, Gim JH, Kim J (2011) J Electrochem Soc 158:A59–A62

    Article  CAS  Google Scholar 

  20. Lee GH, Hoh SH, Jeong JW, Choi BJ, Kim SH, Ri HC (2002) J Am Chem Soc 124:12094–12095

    Article  CAS  Google Scholar 

  21. Herbert G (1994) J Eur Ceram Soc 14:205–214

    Article  Google Scholar 

  22. Kameli P, Salamati H, Aezami A (2008) J Alloys Compd 450:7–11

    Article  CAS  Google Scholar 

  23. Grossin D, Noudem JG (2004) Solid State Sci 6:939–944

    Article  CAS  Google Scholar 

  24. Miyazaki K, Sugimura N, Matsuoka K, Iriyama Y, Abe T, Matsuoka M, Ogumi Z (2008) J Power Sources 178:683–686

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Natural Science Foundation of China (20873032) and Science and Technology Commission of Shanghai Municipality (08DZ2270500).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aishui Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, Z., Lin, X., Huang, T. et al. Nano-sized La0.8Sr0.2MnO3 as oxygen reduction catalyst in nonaqueous Li/O2 batteries. J Solid State Electrochem 16, 1447–1452 (2012). https://doi.org/10.1007/s10008-011-1467-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-011-1467-8

Keywords

Navigation