Skip to main content
Log in

Polymeric membranes conditioning for sensors applications: mechanism and influence on analytes detection

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this work, we studied an ion-exchange membrane based on an inert polymer skeleton in which it is dispersed and anchored a molecule with charged groups able to discriminate and bind positive or negatively charged ions present in a sample. In order to be ready to work, electromembranes need a complex procedure called activation or conditioning. Although most of the known literature looks at the subject from an electrochemical point of view, we put forward a structural approach. Membrane conditioning, in fact, is considered a required step to improve sensor performances and to allow the collection of reproducible data. Even if this operation is carefully followed by all the operators working with sensors equipped with a membrane, it looks like that a thoroughly explanation of the working mechanism and a detailed balance of cost and gains has still not been carried out. As a consequence, we suggest a bulk or membrane approach, where the landscape is mainly characterized by the long-range structure of the membrane itself. Our findings suggest that membrane conditioning has to be carried out carefully and the advantages of this pre-treatment can be appreciated especially for very low concentration measurements. The need for the conditioning mainly results from the necessity of a complete permeation of all the different tortuous channels constituting the membrane itself.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bakker E, Pretsch E (2007) Angew Chem Int Ed 46:5660–5668

    Article  CAS  Google Scholar 

  2. Bobacka J, Ivaska A, Lewenstam A (2008) Chem Rev 108:329–351

    Article  CAS  Google Scholar 

  3. Dewitte K, Stöckl D, Thienpont LM (1999) Lancet 354:1793–1794

    Article  CAS  Google Scholar 

  4. Kang TM, Hilgemann DW (2004) Nature 427:544–548

    Article  CAS  Google Scholar 

  5. Durst RA, Baumner AJ, Murray RW, Buck RP, Andrieux CP (1997) Pure Appl Chem 69:1317–1323

    Article  CAS  Google Scholar 

  6. Alegret S (1996) Analyst 121:1751–1758

    Article  CAS  Google Scholar 

  7. Lazo Fraga AR, Collins A, Forte G, Rescifina A, Punzo F (2009) J Mol Struct 929:174–181

    Article  Google Scholar 

  8. Lazo Fraga AR, Li Destri G, Forte G, Rescifina A, Punzo F (2010) J Mol Struct 981:86–92

    Article  Google Scholar 

  9. Konopka A, Sokalski T, Lewenstam A, Maj-Zurawska M (2006) Electroanalysis 18:2232–2242

    Article  CAS  Google Scholar 

  10. Konopka A, Sokalski T, Michalska A, Lewenstam A, Maj-Zurawska M (2004) Anal Chem 76:6410–6418

    Article  CAS  Google Scholar 

  11. Berezina NP, Timofeev SV, Kononenko NA (2002) J Membr Sci 209:509–518

    Article  CAS  Google Scholar 

  12. Fujimura M, Hashimoto T, Kawai H (1982) Macromolecules 15:136–144

    Article  CAS  Google Scholar 

  13. Gebel G (2000) Polymer 41:5829–5838

    Article  CAS  Google Scholar 

  14. Shukla R, Cheryan M (2002) J Membr Sci 198:75–85

    Article  CAS  Google Scholar 

  15. Pungor E (1998) Anal Sci 14:249–256

    Article  CAS  Google Scholar 

  16. Guggenheim EA (1929) J Phys Chem 33:842–849

    Article  CAS  Google Scholar 

  17. Nikolskii BP (1937) Zh Fiz Khim 10:495–503

    CAS  Google Scholar 

  18. Eisenman G (1969) Ion Selective Electrodes, R.A. Durst (ed), NBS Special Publication 314, NBS, Washington

  19. Lewenstam A (1977) The diffusion layer model in ion-selective electrodes, Ph.D. Thesis, Warsaw University, Poland

  20. Hulanicki A, Lewenstam A (1977) Talanta 24:171–175

    Article  CAS  Google Scholar 

  21. Lewenstam A, Hulanicki A, Sokalski T (1987) Anal Chem 59:539–1544

    Article  Google Scholar 

  22. Szigeti Z, Vigassy T, Bakker E, Pretsch E (2006) Electroanalysis 13–14:1254–1265

    Article  Google Scholar 

  23. Brumleve TR, Buck RP (1978) J Electroanal Chem 90:1–31

    Article  CAS  Google Scholar 

  24. Sokalski T, Lingenfelter P, Lewenstam A (2003) J Phys Chem B 107:2443–2452

    Article  CAS  Google Scholar 

  25. Kanazawa KK, Gordon JG (1985) Anal Chim Acta 175:99–105

    Article  CAS  Google Scholar 

  26. Rodahl M, Kasemo B (1996) Sensors Actuator B Chem 37:111–116

    Article  Google Scholar 

  27. Szczygiel R, Grybos P, Maj P, Tsukiyama A, Matsushita K, Taguchi T (2009) Nucl Instrum Meth A 607:229–232

    Article  CAS  Google Scholar 

  28. Bakker E (1996) J Electrochem Soc 143:L83–L85

    Article  CAS  Google Scholar 

  29. Bakker E (1997) Electroanalysis 9:7–12

    Article  CAS  Google Scholar 

  30. Bakker E, Qin Y (1997) Anal Chem 69:1061–1069

    Article  CAS  Google Scholar 

  31. Sauerbrey G (1959) Z Phys 155:206–222

    Article  CAS  Google Scholar 

  32. Lazo AR, Bustamante M, Jimenez J, Arada MA, Yazdani-Pedram M (2006) J Chil Chem Soc 51:975–978

    Article  CAS  Google Scholar 

  33. Lazo AR, Bustamante M, Arada MA, Jimenez J, M. Yazdani-Pedram M (2005) Afinidad 62:605–610

    CAS  Google Scholar 

  34. Klug HP, Alexander LE (1974) X-ray diffraction procedures for polycrystalline and amorphous materials, 2nd edn. John Wiley, New York

    Google Scholar 

  35. Giacovazzo C (2002) Fundamentals of crystallography. Oxford University Press, Oxford

    Google Scholar 

  36. Morf WE, Badertscher M, Zwickl T, Reichmuth P, de Rooij NF, Pretsch E (2000) J Phys Chem B 104:8201–8209

    Article  CAS  Google Scholar 

  37. Sutter J, Pretsch E (2006) Electronalysis 18:19–25

    Article  CAS  Google Scholar 

  38. De Marco R, Veder J-P, Clarke G, Nelson A, Prince K, Pretsch E, Bakker E (2008) PCCP 10:73–76

    Article  Google Scholar 

Download references

Acknowledgements

Authors wish to thank Prof. G. Marletta for the helpful discussions. ARLF acknowledges CSGI financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Punzo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lazo Fraga, A.R., Calvo Quintana, J., Li Destri, G. et al. Polymeric membranes conditioning for sensors applications: mechanism and influence on analytes detection. J Solid State Electrochem 16, 901–909 (2012). https://doi.org/10.1007/s10008-011-1456-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-011-1456-y

Keywords

Navigation