Skip to main content
Log in

Syntheses and modifications of bisdiazonium salts of 3,8-benzo[c]cinnoline and 3,8-benzo[c]cinnoline 5-oxide onto glassy carbon electrode and the characterization of the modified surfaces

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The goal of this study was to prepare novel glassy carbon electrode surfaces using two similar bis-diazonium salts, 3,8-benzo[c]cinnoline (3,8-BCC-BDAS) and 3,8-benzo[c]cinnoline 5-oxide (3,8-BCCNO-BDAS) at the glassy carbon (GC) surface. These diazonium salts were reduced electrochemically and covalently electrografted onto the glassy carbon electrode surface to form modified electrodes. Electrochemical reduction of 3,8-BCC-BDAS and 3,8-BCCNO-BDAS salts on the electrode surface yielded a compact and stable film. The existence of BCC moieties on the GC surface was characterized by X-ray photoelectron spectroscopy, reflectance-adsorption infrared spectroscopy, cyclic voltammetry, ellipsometry, and electrochemical impedance spectroscopy. The stability and working potential range of the novel modified electrodes were also studied. The possibility of analytical application of these novel surfaces for inorganic cations and especially selectivity to copper ions was investigated. 3,8-diaminobenzo[c]cinnoline (3,8-DABCC) and its 5-oxide derivative (3,8-DABCCNO) were synthesized from the reductive cyclization of 2,2′-dinitrobenzidine and prepared their bisdiazonium salts via the tetrazotization reactions of the diamines with NaNO2. The structures of 3,8-DABCC and 3,8-DABCCNO and their corresponding bisdiazonium salts are confirmed by spectral analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bard AJ (1994) Integrated chemical systems: a chemical approach to nanotechnology. John Wiley&Sons, New York

    Google Scholar 

  2. Delamar M, Désarmott G, Fagebaumme O, Hitmi R, Pinson J, Savéant J-M (1997) Carbon 35(6):801–807

    Article  CAS  Google Scholar 

  3. Nöll G, Kozma E, Grandorj R, Carey J, Schödl T, Hauska G, Daub J (2006) Langmuir 22:2378–2383

    Article  Google Scholar 

  4. Downard AJ, Prince MJ (2001) Langmuir 17:5581–5586

    Article  CAS  Google Scholar 

  5. Adenier A, Bernard MC, Chehimi MM, Cabet-Deliry E, Desbat B, Fagebaume O, Pinson J, Podvorica F (2001) J Am Chem Soc 123:4541–4549

    Article  CAS  Google Scholar 

  6. Downard AJ (2000) Electroanalysis 12(14):1085–1096

    Article  CAS  Google Scholar 

  7. Dalmolin C, Canobre SC, Biaggio SR, Rocha-Filho RC, Bocchi N (2005) J Electroanal Chem 578(1):9–15

    Article  CAS  Google Scholar 

  8. Dong H, Zheng H, Lin L, Ye B (2006) Sens Actuators B 115(1):303–308

    Article  Google Scholar 

  9. Pinson J, Podvorica F (2005) Chem Soc Rev 34:429–439

    Article  CAS  Google Scholar 

  10. Solak AO, Eichorst LR, Clark WJ, McCreery RL (2003) Anal Chem 75:296–305

    Article  CAS  Google Scholar 

  11. İsbir AA, Solak AO, Üstündağ Z, Bilge S, Natsagdorj A, Kılıç E, Kılıç Z (2005) Anal Chim Acta 547(1):59–63

    Article  Google Scholar 

  12. İsbir AA, Solak AO, Üstündağ Z, Bilge S, Kılıç Z (2006) Anal Chim Acta 573–574:26–33

    Google Scholar 

  13. İsbir-Turan AA, Üstündağ Z, Solak AO, Kılıç E, Avseven A (2008) Electroanalysis 20(15):1665–1670

    Article  Google Scholar 

  14. İsbir-Turan AA, Üstündağ Z, Solak AO, Kılıç E, Avseven A (2009) Thin Solid Films 517(9):2871–2877

    Article  Google Scholar 

  15. Üstündağ Z, İsbir-Turan AA, Solak AO, Kılıç E, Avseven A (2009) Instrum Sci Technol 37(3):284–302

    Article  Google Scholar 

  16. Combellas C, Kanoufi F, Pinson J, Podvorica FI (2005) Langmuir 21:280–286

    Article  CAS  Google Scholar 

  17. McCreery RL, Viswanathan U, Prasad Kalakodimi R, Nowak AM (2006) Faraday Discuss 131:33–43

    Article  CAS  Google Scholar 

  18. Palacin S, Bureau C, Charlier J, Deniau G, Mouanda B, Viel P (2004) Chemphyschem 5:1468–1481

    Article  CAS  Google Scholar 

  19. Harper JC, Polsky R, Wheeler DR, Brozik SM (2008) Langmuir 24:2206–2211

    Article  CAS  Google Scholar 

  20. Gooding JJ (2008) Electroanalysis 20(6):573–582

    Article  CAS  Google Scholar 

  21. Ping H, Zhiqiang X, Juntao L (1996) J Electroanal Chem 405(1–2):217–221

    Google Scholar 

  22. Ranganathan S, McCreery RL (2001) Anal Chem 73:893–900

    Article  CAS  Google Scholar 

  23. Morita K, Yamaguchi A, Teramae N (2004) J Electroanal Chem 563(2):249–255

    Article  CAS  Google Scholar 

  24. Zhou J, Wipf DO (1997) J Electrochem Soc 144(4):1202–1207

    Article  CAS  Google Scholar 

  25. Sullivan MG, Schnyder B, Bärtsch M, Alliata D, Barbero C, Imhof R, Kötz R (2000) J Electrochem Soc 147(7):2636–2643

    Article  CAS  Google Scholar 

  26. Fukuda N, Mitsuishi M, Aoki A, Miyashita T (2002) J Phys Chem B 106(28):7048–7052

    Article  CAS  Google Scholar 

  27. Kalk W, Schuendehuette KH (1972) DE2041689

  28. Wolf GD, Miessen R, Nischk G (1975) DE2404460

  29. Etienne A, Le Berre A, Brun JJ (1969) FR1576505

  30. Gerald J (1980) DE2939259

  31. Hirose H, Watanabe K, Kinoshita A (1986) JP61259257

  32. Oomura S, Go S, Tanaka M (1992) JP4256960

  33. Leary JA, Lafleur AL, Liber HL, Biemann K (1983) Anal Chem 55(4):758–761

    Article  CAS  Google Scholar 

  34. Entwistle ID, Gilkerson T, Barton JW (1981) GB2059263

  35. Etienne A, İzoret G (1964) Bull Soc Chim Fr 11:2897–2901

    Google Scholar 

  36. Kılıc E, Tüzün C (1990) Org Prep Proced Int 22(4):485–493

    Article  Google Scholar 

  37. Paradisi C, Gonzalez-Trueba G, Scorrano G (1993) Tetrahedron Lett 34(5):877–878

    Article  CAS  Google Scholar 

  38. Bjorsvik HR, Gonzalez RR, Liguori L (2004) J Org Chem 69(22):7720–7727

    Article  CAS  Google Scholar 

  39. Ullmann F, Dieterle P (1904) Berichte 22:23–36

    Google Scholar 

  40. Braithwaite RSW, Holt PF, Hughes AN (1958) J Chem Soc 4073–4077

  41. Anariba F, Viswanathan U, Bocian DF, McCreery RL (2006) Anal Chem 78:3104–3112

    Article  CAS  Google Scholar 

  42. Clark AJ, Rooke SM (2003) In: Knipe AC, Watts WE (eds) Organic reaction mechanisms in radical reactions. John Wiley&Sons, New York

    Google Scholar 

  43. Üstündağ Z, Solak AO (2009) Electrochim Acta 54(26):6426–6433

    Article  Google Scholar 

  44. Cruickshank AC, Tan ESQ, Brooksby PA, Downard AJ (2007) Electrochem Commun 9:1456–1462

    Article  CAS  Google Scholar 

  45. Matrab T, Hauquier F, Combellas C, Kanoufi F (2010) Chemphyschem 11:670–682

    Article  CAS  Google Scholar 

  46. Saby C, Ortiz B, Champagne GY, Bélanger D (1997) Langmuir 13:3837–3844

    Article  Google Scholar 

  47. Hurley BL, McCreery RL (2004) J Electrochem Soc 151:B252–B259

    Article  CAS  Google Scholar 

  48. Doppelt P, Hallais G, Pinson J, Podvorica F, Verneyre S (2007) Chem Mat 19:4570–4575

    Article  CAS  Google Scholar 

  49. McCreery RL (2008) Chem Rev 108(7):2646–2687

    Article  CAS  Google Scholar 

  50. Jaramillo A, Spurlock LD, Young V, Brajter-Toth A (1999) Analyst 124:1215–1221

    Article  CAS  Google Scholar 

  51. Hwu JR, Das AR, Yang CW, Huang J-J, Hsu M-H (2005) Org Lett 7(15):3211–3214

    Article  CAS  Google Scholar 

  52. Yasseri A, Syomin D, Malinovskii V, Loewe R, Lindsey J, Zaera F, Bocian DF (2004) J Am Chem Soc 126:11944–11953

    Article  CAS  Google Scholar 

  53. Wei L, Syomin D, Loewe R, Lindsey JS, Zaera F, Bocian DF (2005) J Phys Chem B 109:6323–6330

    Article  CAS  Google Scholar 

  54. Yasseri A, Syomin D, Loewe R, Lindsey J, Zaera F, Bocian DF (2004) J Am Chem Soc 126:15603–15612

    Article  CAS  Google Scholar 

  55. Macdonald DD (2006) Electrochim Acta 51(8–9):1376–1388

    Article  CAS  Google Scholar 

  56. Pedrosa VA, Suffredini HB, Codognoto L, Tanimoto ST, Machado SAS, Avaca LA (2005) Anal Lett 38(7):1115–1125

    Article  CAS  Google Scholar 

  57. Jin G, Lin X, Gong J (2004) J Electroanal Chem 569(1):135–142

    Article  CAS  Google Scholar 

  58. Chen P, McCreery RL (1996) Anal Chem 68(22):3958–3965

    Article  CAS  Google Scholar 

  59. Oliveira-Brett AM, da Silva LA, Brett CMA (2002) Langmuir 18(6):2326–2330

    Article  CAS  Google Scholar 

  60. Ganesh V, Pal SK, Kumar S, Lakshminarayanan V (2006) J Colloid Interf Sci 296:195–203

    Article  CAS  Google Scholar 

  61. Doubova LM, Daolio S, Pagura C, de Battisti A, Trasatti S (2003) Russ J Electrochem 39(2):164–169

    Article  CAS  Google Scholar 

  62. Sawyer DT, Sobkowlak A, Roberts JL (1995) J Electrochemistry for Chemists Ch. 7, Wiley-Interscience Pub, New York

  63. Amours MD, Bélanger D (2003) J Phys Chem B 107(20):4811–4817

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ankara University Scientific Research Fund with Project Grant numbers of 2000-07-05-019 and 2003-07-05-084 and by the TUBITAK (Scientific and Technological Research Council of Turkey) project with a number of 106T622.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Osman Solak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

İsbir-Turan, A.A., Kılıç, E., Üstündağ, Z. et al. Syntheses and modifications of bisdiazonium salts of 3,8-benzo[c]cinnoline and 3,8-benzo[c]cinnoline 5-oxide onto glassy carbon electrode and the characterization of the modified surfaces. J Solid State Electrochem 16, 235–245 (2012). https://doi.org/10.1007/s10008-011-1319-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-011-1319-6

Keywords

Navigation