Skip to main content
Log in

Photopolymerized silver-containing conducting polymer films. Part I. An electronic conductivity and cyclic voltammetric investigation

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A photopolymerization process that simultaneously deposits electronically conducting polymer films and incorporates nanophase silver grains within the films, the silver grains having been formed in situ on irradiating cast, photopolymerizable formulations containing silver salts, was developed. Polymer films produced from formulations containing large organic anions were very flexible and strongly adherent to substrates. Polypyrrole films containing silver grains were characterized electronically on measuring their electronic conductivities and electrochemically on recording their cyclic voltammetric profiles. Conductivities were affected by the chemical identity and concentration of components added to photopolymerizable formulations. The best photopolymerized films had a conductivity of the order of 1 S cm−1. Electronically conducting films derived from formulations consisting of a monomer, an electron acceptor/“dopant,” and a photoinitiator were electrochemically active. They possessed long-term stability under extended electrode potential cycling conditions, acceptable charge storage capacity, and the ability to oxidize or reduce redox couples in solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Meador MAB, Gaier JR, Good BS, Sharp GR, Meador MA (1990) SAMPE Q 22(1):23

    CAS  Google Scholar 

  2. Angelopoulos M (2001) IBM J Res Develop 45(1):57

    Article  CAS  Google Scholar 

  3. Inzelt G, Pineri M, Schultze JW, Vorotyntsev MA (2000) Electrochim Acta 45:2403, doi:10.1016/S0013-4686(00)00329-7

    Article  CAS  Google Scholar 

  4. Biallozor S, Kupniewska A (2005) Synth Met 155:443, doi:10.1016/j.synthmet.2005.09.002

    Article  CAS  Google Scholar 

  5. Kraft A, Grimsdale AC, Holmes AB (1998) Angew Chem Int Ed 37:402, doi:10.1002/(SICI)1521-3773(19980302)37:4<402::AID-ANIE402>3.0.CO;2-9

    Article  Google Scholar 

  6. MacDiarmid AG (2001) Angew Chem Int Ed 40:2581, doi:10.1002/1521-3773(20010716)40:14<2581::AID-ANIE2581>3.0.CO;2-2

    Article  CAS  Google Scholar 

  7. Heeger AJ (2001) Angew Chem Int Ed 40:2591, doi:10.1002/1521-3773(20010716)40:14<2591::AID-ANIE2591>3.0.CO;2-0

    Article  CAS  Google Scholar 

  8. Gurunathan K, Murugan AV, Marimuthu R, Mulik UP, Amalnerkar DP (1999) Mater Chem Phys 61:173, doi:10.1016/S0254-0584(99)00081-4

    Article  CAS  Google Scholar 

  9. Inzelt G (2008) Conducting polymers: a new era in electrochemistry, chapter 7. Springer, Berlin

    Google Scholar 

  10. Epstein AF (2007) In: Mark JE (ed) Physical properties of polymer handbook, chapter 46, 2nd edn. Springer, New York

  11. Pron A, Rannou P (2002) Prog Polym Sci 27:135, doi:10.1016/S0079-6700(01)00043-0

    Article  CAS  Google Scholar 

  12. Heinze J (1990) Top Curr Chem 152:1, doi:10.1007/BFb0034363

    Article  CAS  Google Scholar 

  13. Otero TF, Ariza MJ (2003) J Phys Chem B 107:13954, doi:10.1021/jp0362842

    Article  CAS  Google Scholar 

  14. Malinauskas A (2001) Polymer (Guildf) 42:3957, doi:10.1016/S0032-3861(00)00800-4

    Article  CAS  Google Scholar 

  15. Li XG, Wei F, Huang MR, Xie YB (2007) J Phys Chem B 111:5829, doi:10.1021/jp0710180

    Article  CAS  Google Scholar 

  16. Liu W, Kumar J, Tripathy S, Senecal KJ, Samuelson LJ (1999) J Am Chem Soc 121:71, doi:10.1021/ja982270b

    Article  CAS  Google Scholar 

  17. Song HK, Palmore GTR (2005) J Phys Chem B 109:19278, doi:10.1021/jp0514978

    Article  CAS  Google Scholar 

  18. Yildiz A, Sobczynski A, Bard AJ, Campion A, Fox MA, Mallouk TE, Webber SE, White JM (1989) Langmiur 5:148, doi:10.1021/la00085a027

    Article  CAS  Google Scholar 

  19. Kern JM, Sauvage JP (1989) J Chem Soc Chem Commun 657, doi:10.1039/c39890000657

  20. Segawa H, Shimidzu T, Honda K (1989) J Chem Soc Chem Commun 132, doi:10.1039/c39890000132

  21. Rodriquez I, Gonzalez-Velasco J (1990) J Chem Soc Chem Commun 387, doi:10.1039/c39900000387

  22. Reisch MS (1991) Chem Eng News 69(41):29

    Google Scholar 

  23. Krajewski JJ (1990) J Coat Technol 62:73

    Google Scholar 

  24. Pappas SP (1978) UV curing: science and technology, vol. 1. Technology Marketing, Stamford, CT

    Google Scholar 

  25. Pappas SP (1985) UV curing: science and technology, vol. 2. Technology Marketing, Stamford, CT

    Google Scholar 

  26. Roffey CG (1982) Photopolymerization of surface coatings. Wiley, Chichester

    Google Scholar 

  27. Green GE, Stark BP, Zahir SA (1981) J Macromol Sci C 21:187

    Google Scholar 

  28. Freund MS, Deore BA (2007) Self-doped conducting polymers, chapter 1. Wiley, Hoboken, NJ

    Book  Google Scholar 

  29. Crivello JV, Lam JHW (1979) J Polym Sci Polym Chem Ed 17:977, doi:10.1002/pol.1979.170170405

    Article  CAS  Google Scholar 

  30. Crivello JV, Lee JL (1981) Macromolecules 14:1141, doi:10.1021/ma50006a001

    Article  CAS  Google Scholar 

  31. van der Paw LJ (1958) Philips Res Rep 13:1

    Google Scholar 

  32. Warren LF, Anderson DP (1987) J Electrochem Soc 134:101, doi:10.1149/1.2100383

    Article  CAS  Google Scholar 

  33. Inzelt G (2008) Conducting polymers: a new era in electrochemistry, chapter 3. Springer, Berlin

    Google Scholar 

  34. Cvetko BF, Brungs MP, Burford RP, Skyllas-Kazacos M (1987) J Appl Electrochem 17:1198, doi:10.1007/BF01023603

    Article  CAS  Google Scholar 

  35. Cvetko BF, Brungs MP, Burford RP, Skyllas-Kazacos M (1988) J Mater Sci 23:2102, doi:10.1007/BF01115775

    Article  CAS  Google Scholar 

  36. Zhang H, Changjiang L (1991) Synth Met 44:143, doi:10.1016/0379-6779(91)91829-Y

    Article  CAS  Google Scholar 

  37. Tan KL, Tan BTG, Khor SH, Neoh KG, Kang ET (1991) J Phys Chem Solids 52:673, doi:10.1016/0022-3697(91)90166-W

    Article  CAS  Google Scholar 

  38. Geiss RH, Street GB, Volksen W, Economy J (1983) IBM J Res Develop 27:321

    CAS  Google Scholar 

  39. Munstedt H (1988) Polymer (Guildf) 29:296, doi:10.1016/0032-3861(88)90337-0

    Article  Google Scholar 

  40. Kivelson S (1982) Phys Rev B 25:3798, doi:10.1103/PhysRevB.25.3798

    Article  CAS  Google Scholar 

  41. Heinze J (1991) Synth Met 41–43:2805, doi:10.1016/0379-6779(91)91183-B

    Article  Google Scholar 

  42. Inzelt G (2008) Conducting polymers: a new era in electrochemistry, chapter 4. Springer, Berlin

    Google Scholar 

  43. Qian R, Qiu J, Shen D (1987) Synth Met 18:13, doi:10.1016/0379-6779(87)90846-0

    Article  CAS  Google Scholar 

  44. Chao TH, March J (1988) J Polym Sci Part A Polym Chem 26:743, doi:10.1002/pola.1988.080260306

    Article  CAS  Google Scholar 

  45. Zhou M, Heinze J (1999) Electrochim Acta 44:1733, doi:10.1016/S0013-4686(98)00293-X

    Article  CAS  Google Scholar 

  46. Lang GG, Ujvari M, Inzelt G (2001) Electrochim Acta 46:4149, doi:10.1016/S0013-4686(01)00704-6

    Article  Google Scholar 

  47. Inzelt G (2008) Conducting polymers: a new era in electrochemistry, chapter 6. Springer, Berlin

    Google Scholar 

  48. de Gennes PG (1981) Macromolecules 14:1637, doi:10.1021/ma50007a007

    Article  Google Scholar 

  49. Bull RA, Fan FRF, Bard AJ (1982) J Electrochem Soc 129:1009, doi:10.1149/1.2124000

    Article  CAS  Google Scholar 

  50. Chandler GK, Pletcher D (1986) J Appl Electrochem 16:62, doi:10.1007/BF01015984

    Article  CAS  Google Scholar 

  51. Levi MD, Pisarevskaya EY (1993) Synth Met 55–57:1377, doi:10.1016/0379-6779(93)90254-T

    Article  Google Scholar 

  52. Quillard S, Berrada K, Louarn G, Lefrant S, Lapkowski M, Pron A (1995) New J Chem 19:365

    CAS  Google Scholar 

Download references

Acknowledgment

The authors gratefully acknowledge grant ISI 9060319 awarded by the National Science Foundation and contract NAS3-26506 awarded by the National Aeronautics and Space Administration for providing funding in support of the work described in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver J. Murphy.

Additional information

Paper submitted for inclusion in the special issue of the Journal of Solid State Electrochemistry honouring the 85th birthday of Professor John O’M. Bockris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hodko, D., Gamboa-Aldeco, M. & Murphy, O.J. Photopolymerized silver-containing conducting polymer films. Part I. An electronic conductivity and cyclic voltammetric investigation. J Solid State Electrochem 13, 1063–1075 (2009). https://doi.org/10.1007/s10008-008-0714-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-008-0714-0

Keywords

Navigation