Skip to main content
Log in

Scavenging of OH and OOH radicals by polyradicals of small polycyclic aromatic hydrocarbons

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The hydroxyl and peroxyl radicals, particularly the former, occur abundantly and damage almost all types of materials. Polycyclic aromatic hydrocarbons (PAHs) and their polyradicals (all hydrogens removed) have been considered as models for graphene in some recent studies. Geometries of different adducts of polyradicals of two small PAHs having four and nine benzene rings with an OH or OOH radical each were optimized employing unrestricted density functional theory and two different density functionals. The ground states of all the adducts involving the PAHs had doublet spin multiplicity while those involving the polyradicals had doublet, quartet, sextet, or octet spin multiplicity that was decided on the basis of calculated minimum total energies for optimized geometries. Binding energies of the adducts of an OH or OOH radical at the different sites of the polyradicals of PAHs showed that the OH radical would bind with these systems much more strongly than the OOH radical while both the radicals would bind much more strongly with the polyradicals than with the PAHs. Furthermore, both the OH and OOH radicals are found to bind at the edges of the polyradicals much more strongly than at their interior sites. It is shown that polyradicals can serve as efficient scavengers of OH and OOH radicals and therefore, these materials can be used to protect both biological and non-biological systems from damage due to reactions with these radicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

NA

References

  1. Geim AK, Novoselov KS (2007) The rise of graphene. Nature Mater 6:183–191

    Article  CAS  Google Scholar 

  2. Novoselov KS, Falko VI, Colombo L, Gellert PR, Schwab MG, Kim K (2012) A roadmap of graphene. Nature 490:192–200

    Article  CAS  PubMed  Google Scholar 

  3. Acik M, Chabal YJ (2011) Nature of Graphene edges: a review. Jpn. J. Appl. Phys 50:070101–070115

    Article  Google Scholar 

  4. Blake P, Brimicombe PD, Nair RR, Booth TJ, Jiang D, Schedin F, Ponomarenko LA, Morozov SV, Gleeson HF, Hill EW, Geim AK, Novoselov KS (2008) Graphene-based liquid crystal device. Nano Lett 8:1704–1708

    Article  PubMed  Google Scholar 

  5. Lee WH, Park J, Kim Y, Kim KS, Hong BH, Cho K (2011) Control of graphene field-effect transistors by interfacial hydrophobic self-assembled monolayers. Adv. Mater 23:3460–3464

    Article  CAS  PubMed  Google Scholar 

  6. Huh S, Park J, Kim KS, Hong BH, Kim SB (2011) Selective n-type doping of graphene by photo-patterned gold nanoparticles. ACS Nano 5:3639–3644

    Article  CAS  PubMed  Google Scholar 

  7. Chen D, Tang LH, Li JH (2010) Graphene-based materials in electrochemistry. Chem. Soc. Rev 39:3157–3180

    Article  CAS  PubMed  Google Scholar 

  8. Yi JW, Park J, Singh NJ, Lee IJ, Kim KS, Kim BH (2011) pH-Responsive self-duplex of PyA-substituted oligodeoxyadenylate in graphene oxide solution as a molecular switch. Med. Chem. Lett 21:7434–7438

    Google Scholar 

  9. Tasis D, Tagmatarchis N, Bianco A, Prato M (2006) Chemistry of carbon nanotubes. Chem. Rev 106:1105–1136

    Article  CAS  PubMed  Google Scholar 

  10. Yang W, Thordarson P, Gooding JJ, Ringer SP, Braet F (2007) Carbon nanotubes for biological and biomedical applications. Nanotechnology 18:412001–412012

    Article  Google Scholar 

  11. Niyogi S, Hamon MA, Hu H, Zhao B, Bhowmik P, Sen R, Itkis ME, Haddon RC (2002) Chemistry of single-walled carbon nanotubes. Acc. Chem. Res 35:1105–1113

    Article  CAS  PubMed  Google Scholar 

  12. Balasubramanian K, Burghard M (2005) Chemically functionalized carbon nanotubes. Small 1:180–192

    Article  CAS  PubMed  Google Scholar 

  13. Banerjee S, Hemraj-Benny T, Wong SS (2005) Covalent surface chemistry of single walled carbon nanotubes. Adv. Mater 17:17–29

    Article  CAS  Google Scholar 

  14. Rao CNR, Sood AK, Subrahmanyam KS, Govindaraj A (2009) Graphene: the new two dimensional nanomaterial. Angew. Chem. Int. Ed. 48:7752–7777

    Article  CAS  Google Scholar 

  15. Nair RR, Ren W, Jalil R, Riaz I, Kravets VG, Britnell L, Blake P, Schedin F, Mayorov AS, Yuan S, Katsnelson MI, Cheng HM, Strupinski W, Bulusheva LG, Okotrub AV, Grigorieva IV, Grigorenko AN, Novoselov KS, Geim AK (2010) Fluorographene: a two-dimensional counterpart of Teflon. Small 6:2877–2884

    Article  CAS  PubMed  Google Scholar 

  16. Stankovich S, Dikin DA, Dommett GHB, Kohlhass KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442:282–286

    Article  CAS  PubMed  Google Scholar 

  17. Hod O, Peralta JE, Scuseria GE (2007) Edge effects in finite elongated graphene nanoribbons. Phys. Rev. B 76:233401–233404

    Article  Google Scholar 

  18. Gomez-Navarro C, Weitz RT, Bittner AM, Scolari M, Mews A, Burghard M, Kern K (2007) Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett 7:3499–3503

    Article  CAS  PubMed  Google Scholar 

  19. Park S, Lee KS, Bozoklu G, Cai W, Nguyen ST, Ruoff RS Graphene oxide papers modified by divalent ions-enhancing mechanical properties via chemical cross-linking. ACS Nano 2:572–578

  20. Yan QM, Huang B, Yu J, Zheng F, Zang J, Wu J, Gu BL, Liu F, Duan W (2007) Intrinsic current−voltage characteristics of graphene nanoribbon transistors and effect of edge doping. Nano Lett 7:1469–1473

    Article  CAS  PubMed  Google Scholar 

  21. Boukhvalov DW, Katsnelson MI, Lichtenstein AI (2008) Hydrogen on graphene: electronic structure, total energy, structural distortions and magnetism from first-principles calculations. Phys. Rev. B 77:035427

    Article  Google Scholar 

  22. Elias DC, Nair RR, Mohiuddin TMG, Morozov SV, Blake P, Halsall MP, Ferrari AC, Boukhvalov DW, Katsnelson MI, Geim AK, Novoselov KS (2009) Control of graphene’s properties by reversible hydrogenation: evidence for graphene. Science 323:610–613

    Article  CAS  PubMed  Google Scholar 

  23. Barone V, Hod O, Scuseria GE (2006) Electronic structure and stability of semiconducting graphene nanoribbons. Nano Lett 6:2748–2754

    Article  CAS  PubMed  Google Scholar 

  24. Kan E, Li Z, Yang J, Hou JG (2008) Half-metallicity in edge-modified zigzag graphene nanoribbons. J. Am. Chem. Soc 130:4224–4225

    Article  CAS  PubMed  Google Scholar 

  25. Hod O, Barone V, Scuseria GE (2008) Half-metallic grapheme nanodots: a comprehensive first-principles theoretical study. Phys. Rev. B 77:035411

    Article  Google Scholar 

  26. Jiang D, Stumper BG, Dai S (2007) Unique chemical reactivity of a graphene nanoribbon’s zigzag edge. J. Chem. Phys 126:134701

    Article  PubMed  Google Scholar 

  27. Mohanty N, Berry V (2008) Graphene-based single-bacterium resolution biodevice and DNA transistor: interfacing graphene derivatives with nanoscale and microscale biocomponents. Nano Lett 8:4469–4476

    Article  CAS  PubMed  Google Scholar 

  28. Lalwani G, Henslee AM, Farshid B, Lin L, Kasper FK, Qin YX, Mikos AG, Sitharaman B (2013) Two-dimensional nanostructure-reinforced biodegradable polymeric nanocomposites for bone tissue engineering. Biomacromolecules 14:900–909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lalwani G, Sundararaj JL, Schaefer K, Button T, Sitharaman B (2014) Synthesis, characterization, in vitro phantom imaging, and cytotoxicity of a novel graphene-based multimodal magnetic resonance imaging-X-ray computed tomography contrast agent. J. Mater. Chem. B 2:3519–3530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chowdhury SM, Lalwani G, Zhang K, Yang JY, Neville K, Sitharaman B (2013) Cell specific cytotoxicity and uptake of graphenenanoribbons. Biomaterials 34:283–293

    Article  Google Scholar 

  31. Khaliq RA, Kafafy R, Salleh HM, Faris WF (2012) Enhancing the efficiency of polymerase chain reaction using graphene nanoflakes. Nanotechnology 23:455106

    Article  PubMed  Google Scholar 

  32. Bonaccorso F, Lombardo A, Hasan T, Sun Z, Colombo L, Ferrari AC (2012) Production and processing of graphene and 2d crystals. Mater. Today 15:564–589

    Article  CAS  Google Scholar 

  33. Jiang T, Sun W, Zhu Q, Burns NA, Khan SA, Mo R, Gu Z (2014) Furin-mediated sequential delivery of anticancer cytokine and small molecule drug shuttled by graphene. Advanced Materials 27:1021–1028

    Article  PubMed  Google Scholar 

  34. Qiu Q, Wang Z, Owens ACE, Kulaots I, Chen Y, Kane AB, Hurt RC (2014) Antioxidant chemistry of graphene-based materials and its role in oxidation protection technology. Nanoscale 6:11744–11755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yadav A, Mishra PC (2012) Carbonate radical anion as an efficient reactive oxygen species: its reaction with guanyl radical and formation of 8-oxoguanine. Chem. Phys 405:76–88

    Article  CAS  Google Scholar 

  36. Wang G, Shi G, Chen X, Chen F, Yao R, Wang Z (2013) Loading of free radicals on the functional graphene combined with liquid chromatography–tandem mass spectrometry screening method for the detection of radical-scavenging natural antioxidants. Analyt. Chim. Acta 802:103–112

    Article  CAS  Google Scholar 

  37. Mishra PC, Yadav A (2012) Polycyclic aromatic hydrocarbons as finite size models of graphene and graphenenanoribbons: enhanced electron density edge effect. Chem. Phys 402:56–68

    Article  CAS  Google Scholar 

  38. Acik M, Chabal YJ (2011) Nature of graphene edges: a review. Jpn. J. Appl. Phys 50:070101–070116

    Article  Google Scholar 

  39. Yadav A, Mishra PC (2013) Polyradicals of polycyclic aromatic hydrocarbons as finite size models of graphene: highly open-shell nature, symmetry breaking, and enhanced-edge electron density. J. Phys. Chem. A 117:8958–8968

    Article  CAS  PubMed  Google Scholar 

  40. Kim SN, Kuang Z, Slocik JM, Jones SE, Cui Y, Farmer BL, McAlpine MC, Naik RR (2011) Preferential binding of peptides to graphene edges and planes. J. Am. Chem. Soc 133:14480–14483

    Article  CAS  PubMed  Google Scholar 

  41. Bonfanti M, Casolo S, Tantardini GF, Ponti A, Martinazzo R (2011) A few simple rules governing hydrogenation of graphene dots. J. Chem. Phys 135:164701

    Article  CAS  PubMed  Google Scholar 

  42. Sharma R, Baik JH, Perera CJ, Strano MS (2010) Anomalously large reactivity of single graphene layers and edges toward electron transfer chemistries. Nano Lett 10:398–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sinitskii A, Dimiev A, Corley DA, Fursina AA, Kosynkin DV, Tour JM (2010) Kinetics of diazonium functionalization of chemically converted graphene nanoribbons. ACS Nano 4:1949–1954

    Article  CAS  PubMed  Google Scholar 

  44. Niyogi S, Bekyarova E, Itkis ME, Zhang H, Shepperd K, Hicks J, Sprinkle M, Berger C, Ning Lau C, de Heer WA, Conrad EH, Haddon RC Spectroscopy of covalently functionalized graphene. Nano Lett 10:4061–4066

  45. Becke AD (1993) Density functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98:5648

    Article  CAS  Google Scholar 

  46. Zhao Y, Truhlar DG (2008) Exploring the limit of accuracy of the global hybrid meta density functional for main-group thermochemistry, kinetics, and noncovalent interactions. J. Chem. Theory Comput 4:1849–1868

    Article  CAS  PubMed  Google Scholar 

  47. Sonnenberg JL, Schlegel HB, Hratchian HP (2009) In: Solomon EI, Scott RA, King RB (eds) Computational inorganic and bioinorganic chemistry. John Wiley & Sons, New York

    Google Scholar 

  48. Frisch MJ et al (2009) Gaussian 09, Revision A.1. Gaussian, Inc, Wallingford CT

    Google Scholar 

  49. Dennington R, Keith T (2009) GaussView, Version 5, John Millam, Semichem Inc., Shawnee Mission KS

  50. Yadav A, Mishra PC (2015) Functionalisation of graphene by edge-halogenation and radical addition using polycyclic aromatic hydrocarbon models: edge electron density-binding energy relationship. Mol. Phys 113:739

    Article  CAS  Google Scholar 

  51. Santos EJG, Sánchez-Portal D, Ayuela A (2010) Magnetism of substitutional Co impurities in graphene: realization of single π vacancies. Phys. Rev. B 81:125433

    Article  Google Scholar 

Download references

Acknowledgements

Amarjeet Yadav is thankful to the University Grants Commission (New Delhi) for Dr. D. S. Kothari post doctoral fellowship.

Code availability

NA

Author information

Authors and Affiliations

Authors

Contributions

NA

Corresponding author

Correspondence to Amarjeet Yadav.

Ethics declarations

Ethics approval

NA

Consent to participate

NA

Consent for publication

NA

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, A., Tiwari, M.K., Kumar, D. et al. Scavenging of OH and OOH radicals by polyradicals of small polycyclic aromatic hydrocarbons. J Mol Model 27, 112 (2021). https://doi.org/10.1007/s00894-021-04737-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-021-04737-w

Keywords

Navigation