Skip to main content
Log in

The effect of an electric field on ion separation and water desalination using molecular dynamics simulations

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Using molecular dynamics simulations, we analyze ion separation and water purification through a piston-driven graphene/carbon-nanotube filter in the presence of an external electric field. Three different magnitudes of electric field are applied along the nanotube’s axial direction with the goal of separating sodium and chloride ions in a NaCl aqueous solution. For comparison purposes, we also study the same system in zero fields. Our results show that sufficiently large values of the electric field strength greatly improve the ion separation process. At the highest field strength, the theoretical efficiency of the filter in removing salt from water exceeds 95% indicating its applicability in commercial filtration processes to produce fresh water. These results suggest that the proposed set-up can be used to design highly efficient nanostructured membranes for water desalination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, upon reasonable request.

References

  1. Elimelech M, Phillip WA (2011) The future of seawater desalination: energy, technology, and the environment. Science 333(6043):712–717. https://doi.org/10.1126/science.1200488

    Article  CAS  PubMed  Google Scholar 

  2. Pendergast MM, Hoek EM (2011) A review of water treatment membrane nanotechnologies. Energy Environ. Sci. 4(6):1946–1971

    Article  CAS  Google Scholar 

  3. Corry B (2008) Designing carbon nanotube membranes for efficient water desalination. J. Phys. Chem. B 112(5):1427–1434. https://doi.org/10.1021/jp709845u

    Article  CAS  PubMed  Google Scholar 

  4. Thomas M, Corry B (2016) A computational assessment of the permeability and salt rejection of carbon nanotube membranes and their application to water desalination. Philos Trans Royal Soc A 374(2060):20150020

    Article  Google Scholar 

  5. Cohen-Tanugi D, McGovern RK, Dave SH, Lienhard JH, Grossman JC (2014) Quantifying the potential of ultra-permeable membranes for water desalination. Energy Environ. Sci. 7(3):1134–1141

    Article  CAS  Google Scholar 

  6. Konatham D, Yu J, Ho TA, Striolo A (2013) Simulation insights for graphene-based water desalination membranes. Langmuir 29(38):11884–11897. https://doi.org/10.1021/la4018695

    Article  CAS  PubMed  Google Scholar 

  7. Cohen-Tanugi D, Grossman JC (2012) Water desalination across nanoporous graphene. Nano Lett. 12(7):3602–3608. https://doi.org/10.1021/nl3012853

    Article  CAS  PubMed  Google Scholar 

  8. Lee HD, Kim HW, Cho YH, Park HB (2014) Experimental evidence of rapid water transport through carbon nanotubes embedded in polymeric desalination membranes. Small 10(13):2653–2660

    Article  CAS  Google Scholar 

  9. Zhao K, Wu H (2015) Fast water thermo-pumping flow across nanotube membranes for desalination. Nano Lett. 15(6):3664–3668

    Article  CAS  Google Scholar 

  10. Das R, Ali ME, Abd Hamid SB, Ramakrishna S, Chowdhury ZZ (2014) Carbon nanotube membranes for water purification: a bright future in water desalination. Desalination 336:97–109

    Article  CAS  Google Scholar 

  11. Majumder M, Chopra N, Andrews R, Hinds BJ (2005) Nanoscale hydrodynamics: enhanced flow in carbon nanotubes. Nature 438(7064):44. https://doi.org/10.1038/43844a

    Article  CAS  PubMed  Google Scholar 

  12. Kar S, Bindal RC, Tewari PK (2012) Carbon nanotube membranes for desalination and water purification: challenges and opportunities. Nano Today 7(5):385–389

    Article  CAS  Google Scholar 

  13. Hong Y, Zhang J, Zhu C, Zeng XC, Francisco JS (2019) Water desalination through rim functionalized carbon nanotubes. J. Mater. Chem. A 7(8):3583–3591

    Article  CAS  Google Scholar 

  14. Azamat J, Sardroodi JJ (2014) The permeation of potassium and chloride ions through nanotubes: a molecular simulation study. Monatshefte für Chemie-Chemical Monthly 145(6):881–890

    Article  CAS  Google Scholar 

  15. Goh P, Ismail A, Ng B (2013) Carbon nanotubes for desalination: performance evaluation and current hurdles. Desalination 308:2–14

    Article  CAS  Google Scholar 

  16. Zhang D, Yan T, Shi L, Peng Z, Wen X, Zhang J (2012) Enhanced capacitive deionization performance of graphene/carbon nanotube composites. J. Mater. Chem. 22(29):14696–14704

    Article  CAS  Google Scholar 

  17. Hanasaki I, Nakatani A (2006) Hydrogen bond dynamics and microscopic structure of confined water inside carbon nanotubes. J. Chem. Phys. 124(17):174714. https://doi.org/10.1063/1.2194540

    Article  CAS  PubMed  Google Scholar 

  18. Kalra A, Garde S, Hummer G (2003) Osmotic water transport through carbon nanotube membranes. Proc. Natl. Acad. Sci. 100(18):10175–10180

    Article  CAS  Google Scholar 

  19. Koga K, Gao GT, Tanaka H, Zeng XC (2001) Formation of ordered ice nanotubes inside carbon nanotubes. Nature 412(6849):802–805. https://doi.org/10.1038/35090532

    Article  CAS  PubMed  Google Scholar 

  20. Cohen-Tanugi D, Lin LC, Grossman JC (2016) Multilayer Nanoporous Graphene membranes for water desalination. Nano Lett. 16(2):1027–1033. https://doi.org/10.1021/acs.nanolett.5b04089

    Article  CAS  PubMed  Google Scholar 

  21. Joshi R, Carbone P, Wang F-C, Kravets VG, Su Y, Grigorieva IV, Wu H, Geim AK, Nair RR (2014) Precise and ultrafast molecular sieving through graphene oxide membranes. Science 343(6172):752–754

    Article  CAS  Google Scholar 

  22. Nair R, Wu H, Jayaram P, Grigorieva I, Geim A (2012) Unimpeded permeation of water through helium-leak–tight graphene-based membranes. Science 335(6067):442–444

    Article  CAS  Google Scholar 

  23. Wei N, Peng X, Xu Z (2014) Understanding water permeation in graphene oxide membranes. ACS Appl. Mater. Interfaces 6(8):5877–5883. https://doi.org/10.1021/am500777b

    Article  CAS  PubMed  Google Scholar 

  24. Rinne KF, Gekle S, Bonthuis DJ, Netz RR (2012) Nanoscale pumping of water by AC electric fields. Nano Lett. 12(4):1780–1783. https://doi.org/10.1021/nl203614t

    Article  CAS  PubMed  Google Scholar 

  25. Ritos K, Borg MK, Mottram NJ, Reese JM (2016) Electric fields can control the transport of water in carbon nanotubes. Philos Trans Royal Soc A 374(2060):20150025

    Article  Google Scholar 

  26. Su J, Guo H (2011) Control of unidirectional transport of single-file water molecules through carbon nanotubes in an electric field. ACS Nano 5(1):351–359

    Article  CAS  Google Scholar 

  27. Lohrasebi A, Rikhtehgaran S (2018) Ion separation and water purification by applying external electric field on porous graphene membrane. Nano Res. 11(4):2229–2236

    Article  CAS  Google Scholar 

  28. Azamat J (2016) Functionalized graphene nanosheet as a membrane for water desalination using applied electric fields: insights from molecular dynamics simulations. J. Phys. Chem. C 120(41):23883–23891

    Article  CAS  Google Scholar 

  29. Azamat J, Ebrahimzadeh AR, Sardroodi JJ, Gholinezhad L (2015) Molecular dynamics simulation of nanoporous graphene as membrane for ion separation under induced electric field. J. Comput. Theor. Nanosci. 12(8):1512–1518

    Article  CAS  Google Scholar 

  30. Park JH, Sinnott SB, Aluru NR (2006) Ion separation using a Y-junction carbon nanotube. Nanotechnology 17(3):895

    Article  CAS  Google Scholar 

  31. Rikhtehgaran S, Lohrasebi A (2015) Water desalination by a designed nanofilter of graphene-charged carbon nanotube: a molecular dynamics study. Desalination 365:176–181

    Article  CAS  Google Scholar 

  32. Li D (2018) Water quality monitoring and management : basis, technology and case studies1st edn. Elsevier, Sandiego

    Google Scholar 

  33. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J. Mol. Graph. 14(1):33–38, 27-38. https://doi.org/10.1016/0263-7855(96)00018-5

    Article  CAS  PubMed  Google Scholar 

  34. Plimpton S (1993) Fast parallel algorithms for short-range molecular dynamics. Sandia National Labs., Albuquerque

    Book  Google Scholar 

  35. Hoover WG (1985) Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31(3):1695

    Article  CAS  Google Scholar 

  36. Plimpton S (1995) Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comp. Phys. 117:1-19. http://lammps.sandia.gov

  37. Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118(45):11225–11236

    Article  CAS  Google Scholar 

  38. Nasrabadi AT, Foroutan M (2011) Ion-separation and water-purification using single-walled carbon nanotube electrodes. Desalination 277(1–3):236–243

    Article  CAS  Google Scholar 

  39. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79(2):926–935

    Article  CAS  Google Scholar 

  40. Allen MP, Tildesley DJ (1987) Computer simulation of liquids. Clarendon Press ; Oxford University Press, Oxford England New York

  41. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N log (N) method for Ewald sums in large systems. J. Chem. Phys. 98(12):10089–10092

    Article  CAS  Google Scholar 

  42. Beu TA (2010) Molecular dynamics simulations of ion transport through carbon nanotubes. I. Influence of geometry, ion specificity, and many-body interactions. J. Chem. Phys. 132(16):164513

    Article  Google Scholar 

  43. Wang L, Dumont RS, Dickson JM (2012) Nonequilibrium molecular dynamics simulation of water transport through carbon nanotube membranes at low pressure. J. Chem. Phys. 137(4):044102

    Article  Google Scholar 

  44. Bounds DG (1985) A molecular dynamics study of the structure of water around the ions Li+, Na+, K+, Ca++, Ni++ and Cl. Mol. Phys. 54(6):1335–1355. https://doi.org/10.1080/00268978500101041

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samaneh Rikhtehgaran.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Code availability

The codes of this study are available from the corresponding author, upon reasonable request.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rikhtehgaran, S., Wille, L.T. The effect of an electric field on ion separation and water desalination using molecular dynamics simulations. J Mol Model 27, 21 (2021). https://doi.org/10.1007/s00894-020-04642-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-04642-8

Keywords

Navigation