Skip to main content
Log in

Gas separation using graphene nanosheet: insights from theory and simulation

  • Review
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The investigation of porous graphene, especially experimental research, is a challenging issue in related academic and technology and has become a hot topic in recent years. It is well known that the preparation of porous graphene is a difficult problem in experimental techniques. To prepare nanoporous graphene, much attention must focus on the quality of nanoporous structures and throughput array pores. Therefore, a comprehensive summary as much as possible has been made to provide a better understanding of the progress. A summary of synthesis techniques, the properties of nanoporous graphene membranes from the synthesis point of view, and potential applications of porous graphene and graphene oxide for gas separation on the basis of theoretical studies were given attention in this paper. Gas separation, including carbon dioxide capture, gas storage, natural gas sweetening, and flue gas purification through porous graphene, is of great interest. Porous graphene with narrow pore distribution provides exciting opportunities in gas separation processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Fatemi SM, Baniasadi A, Moradi M (2017) Recent progress in molecular simulation of nanoporous graphene membranes for gas separation. J Korean Phys Soc 71(1):54–62

    Google Scholar 

  2. Huang S, Dakhchoune M, Luo W, Oveisi E, He G, Rezaei M, Zhao J, Alexander DT, Züttel A, Strano MS (2018) Single-layer graphene membranes by crack-free transfer for gas mixture separation. Nat Commun 9:2632

    PubMed  PubMed Central  Google Scholar 

  3. Malekian F, Ghafourian H, Zare K, Sharif A, Zamani Y (2019) Recent progress in gas separation using functionalized graphene nanopores and nanoporous graphene oxide membranes. Eur Phys J Plus 134(5):212

    Google Scholar 

  4. Mermin ND, Wagner H (1966) Absence of ferromagnetism or antiferromagnetism in one-or two-dimensional isotropic Heisenberg models. Phys Rev Lett 17(22):1133

    CAS  Google Scholar 

  5. Neto AC, Guinea F, Peres NM, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Mod Phys 81(1):109

    Google Scholar 

  6. Nag A, Mitra A, Mukhopadhyay SC (2018) Graphene and its sensor-based applications: a review. Sensors Actuators A Phys 270:177–194

    CAS  Google Scholar 

  7. Kumar R, Singh R, Hui D, Feo L, Fraternali F (2018) Graphene as biomedical sensing element: state of art review and potential engineering applications. Compos Part B 134:193–206

    CAS  Google Scholar 

  8. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669

    CAS  PubMed  Google Scholar 

  9. Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887):385–388

    CAS  PubMed  Google Scholar 

  10. Zhao H, Aluru NR (2010) Temperature and strain-rate dependent fracture strength of graphene. J Appl Phys 108(6):064321

    Google Scholar 

  11. Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8(3):902–907

    CAS  PubMed  Google Scholar 

  12. Zhang Y, Tan Y-W, Stormer HL, Kim P (2005) Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438(7065):201

    CAS  PubMed  Google Scholar 

  13. Jiang J-W, Wang J-S, Li B (2009) Young’s modulus of graphene: a molecular dynamics study. Phys Rev B 80(11):113405

    Google Scholar 

  14. Fatemi SM, Fatemi SJ, Abbasi Z (2020) PAMAM dendrimer-based macromolecules and their potential applications: recent advances in theoretical studies. Polym Bull 77:6671–6691. https://doi.org/10.1007/s00289-019-03076-4

    Article  CAS  Google Scholar 

  15. Foroutan M, Fatemi SM, Darvishi M (2018) Formation and stability of water clusters at the molybdenum disulfide interface: a molecular dynamics simulation investigation. J Phys Condens Matter 30(41):415001

    PubMed  Google Scholar 

  16. Foroutan M, Darvishi M, Fatemi SM, Babazadeh KH (2018) Water chain formation on rutile TiO2 (110) nanocrystal: a molecular dynamics simulation approach. J Mol Liq 250:344–352

    CAS  Google Scholar 

  17. Zhang Y, Pan C (2012) Measurements of mechanical properties and number of layers of graphene from nano-indentation. Diam Relat Mater 24:1–5

    Google Scholar 

  18. Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22(35):3906–3924

    CAS  PubMed  Google Scholar 

  19. Hill EW, Vijayaragahvan A, Novoselov K (2011) Graphene sensors. IEEE Sensors J 11(12):3161–3170

    CAS  Google Scholar 

  20. Shen H, Zhang L, Liu M, Zhang Z (2012) Biomedical applications of graphene. Theranostics 2(3):283

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Gwon H, Kim H-S, Lee KU, Seo D-H, Park YC, Lee Y-S, Ahn BT, Kang K (2011) Flexible energy storage devices based on graphene paper. Energy Environ Sci 4(4):1277–1283

    CAS  Google Scholar 

  22. Bonaccorso F, Sun Z, Hasan T, Ferrari A (2010) Graphene photonics and optoelectronics. Nat Photonics 4(9):611

    CAS  Google Scholar 

  23. Yang K, Feng L, Shi X, Liu Z (2013) Nano-graphene in biomedicine: theranostic applications. Chem Soc Rev 42(2):530–547

    CAS  PubMed  Google Scholar 

  24. Brownson DA, Kampouris DK, Banks CE (2011) An overview of graphene in energy production and storage applications. J Power Sources 196(11):4873–4885

    CAS  Google Scholar 

  25. Stankovich S, Dikin DA, Dommett GH, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442(7100):282

    CAS  PubMed  Google Scholar 

  26. Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn J-H, Kim P, Choi J-Y, Hong BH (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457(7230):706

    CAS  PubMed  Google Scholar 

  27. Yang Y, Zhao R, Zhang T, Zhao K, Xiao P, Ma Y, Ajayan PM, Shi G, Chen Y (2018) Graphene-based standalone solar energy converter for water desalination and purification. ACS Nano 12(1):829–835

    CAS  PubMed  Google Scholar 

  28. Brownson DA, Kampouris DK, Banks CE (2012) Graphene electrochemistry: fundamental concepts through to prominent applications. Chem Soc Rev 41(21):6944–6976

    CAS  PubMed  Google Scholar 

  29. Liu C, Yu Z, Neff D, Zhamu A, Jang BZ (2010) Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett 10(12):4863–4868

    CAS  PubMed  Google Scholar 

  30. Chen J, Badioli M, Alonso-González P, Thongrattanasiri S, Huth F, Osmond J, Spasenović M, Centeno A, Pesquera A, Godignon P (2012) Optical nano-imaging of gate-tunable graphene plasmons. Nature 487(7405):77

    CAS  PubMed  Google Scholar 

  31. Bao Q, Loh KP (2012) Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano 6(5):3677–3694

    CAS  PubMed  Google Scholar 

  32. Goenka S, Sant V, Sant S (2014) Graphene-based nanomaterials for drug delivery and tissue engineering. J Control Release 173:75–88

    CAS  PubMed  Google Scholar 

  33. Foroutan M, Fatemi SM, Shokouh F (2016) Graphene confinement effects on melting/freezing point and structure and dynamics behavior of water. J Mol Graph Model 66:85–90

    CAS  PubMed  Google Scholar 

  34. Foroutan M, Fatemi SM, Esmaeilian F (2017) A review of the structure and dynamics of nanoconfined water and ionic liquids via molecular dynamics simulation. Eur Phys J E 40(2):19

    PubMed  Google Scholar 

  35. Miao X, Tongay S, Petterson MK, Berke K, Rinzler AG, Appleton BR, Hebard AF (2012) High efficiency graphene solar cells by chemical doping. Nano Lett 12(6):2745–2750

    CAS  PubMed  Google Scholar 

  36. Foroutan M, Fatemi SM, Esmaeilian F, Fadaei Naeini V, Baniassadi M (2018) Contact angle hysteresis and motion behaviors of a water nano-droplet on suspended graphene under temperature gradient. Phys Fluids 30(5):052101

    Google Scholar 

  37. Foroutan M, Darvishi M, Fatemi SM (2017) Structural and dynamical characterization of water on the Au (100) and graphene surfaces: a molecular dynamics simulation approach. Phys Rev E 96(3):033312

    PubMed  Google Scholar 

  38. Foroutan M, Fatemi SM, Esmaeilian F, Naeini VF (2018) Evaporation of water on suspended graphene: suppressing the effect of physically heterogeneous surfaces. Langmuir 34(46):14085–14095

    CAS  PubMed  Google Scholar 

  39. Fatemi SM, Fatemi SJ (2020) Current investigations in theoretical studies of nanostructure-liquid interfaces. Chin J Phys 65:93–107

    CAS  Google Scholar 

  40. Zhang H, Cheng H-M, Ye P (2018) 2D nanomaterials: beyond graphene and transition metal dichalcogenides. Chem Soc Rev 47(16):6009–6012

    CAS  PubMed  Google Scholar 

  41. Vázquez-Moreno JM, Sánchez-Hidalgo R, Sanz-Horcajo E, Viña J, Verdejo R, López-Manchado MA (2019) Preparation and mechanical properties of graphene/carbon fiber-reinforced hierarchical polymer composites. J Compos Sci 3(1):30

    Google Scholar 

  42. Phiri J, Johansson L-S, Gane P, Maloney T (2018) A comparative study of mechanical, thermal and electrical properties of graphene-, graphene oxide-and reduced graphene oxide-doped microfibrillated cellulose nanocomposites. Compos Part B 147:104–113

    CAS  Google Scholar 

  43. Lee XJ, Hiew BYZ, Lai KC, Lee LY, Gan S, Thangalazhy-Gopakumar S, Rigby S (2019) Review on graphene and its derivatives: synthesis methods and potential industrial implementation. J Taiwan Inst Chem Eng 98:163–180

    CAS  Google Scholar 

  44. Mohan VB, Lau K-t, Hui D, Bhattacharyya D (2018) Graphene-based materials and their composites: a review on production, applications and product limitations. Compos Part B 142:200–220

    CAS  Google Scholar 

  45. Jiang L, Fan Z (2014) Design of advanced porous graphene materials: from graphene nanomesh to 3D architectures. Nanoscale 6(4):1922–1945

    CAS  PubMed  Google Scholar 

  46. Berry V (2013) Impermeability of graphene and its applications. Carbon 62:1–10

    CAS  Google Scholar 

  47. Bunch JS, Verbridge SS, Alden JS, Van Der Zande AM, Parpia JM, Craighead HG, McEuen PL (2008) Impermeable atomic membranes from graphene sheets. Nano Lett 8(8):2458–2462

    CAS  PubMed  Google Scholar 

  48. Cheng XQ, Wang ZX, Jiang X, Li T, Lau CH, Guo Z, Ma J, Shao L (2018) Towards sustainable ultrafast molecular-separation membranes: from conventional polymers to emerging materials. Prog Mater Sci 92:258–283

    CAS  Google Scholar 

  49. Kidambi PR, Terry RA, Wang L, Boutilier MS, Jang D, Kong J, Karnik R (2017) Assessment and control of the impermeability of graphene for atomically thin membranes and barriers. Nanoscale 9(24):8496–8507

    CAS  PubMed  Google Scholar 

  50. Esfandiarpoor S, Fazli M, Ganji MD (2017) Reactive molecular dynamic simulations on the gas separation performance of porous graphene membrane. Sci Rep 7(1):16561

    PubMed  PubMed Central  Google Scholar 

  51. Yuan W, Chen J, Shi G (2014) Nanoporous graphene materials. Mater Today 17(2):77–85

    CAS  Google Scholar 

  52. Zhou D, Cui Y, Xiao P-W, Jiang M-Y, Han B-H (2014) A general and scalable synthesis approach to porous graphene. Nat Commun 5:4716

    CAS  PubMed  Google Scholar 

  53. Liu Y, Mai S, Li N, Yiu CK, Mao J, Pashley DH, Tay FR (2011) Differences between top-down and bottom-up approaches in mineralizing thick, partially demineralized collagen scaffolds. Acta Biomater 7(4):1742–1751

    CAS  PubMed  Google Scholar 

  54. Biswas A, Bayer IS, Biris AS, Wang T, Dervishi E, Faupel F (2012) Advances in top–down and bottom–up surface nanofabrication: techniques, applications & future prospects. Adv Colloid Interf Sci 170(1–2):2–27

    CAS  Google Scholar 

  55. Li J, Stein D, McMullan C, Branton D, Aziz MJ, Golovchenko JA (2001) Ion-beam sculpting at nanometre length scales. Nature 412(6843):166

    CAS  PubMed  Google Scholar 

  56. Krasheninnikov A, Banhart F (2007) Engineering of nanostructured carbon materials with electron or ion beams. Nat Mater 6(10):723

    CAS  PubMed  Google Scholar 

  57. Li W, Liang L, Zhao S, Zhang S, Xue J (2013) Fabrication of nanopores in a graphene sheet with heavy ions: a molecular dynamics study. J Appl Phys 114(23):234304

    Google Scholar 

  58. Fischbein MD, Drndić M (2008) Electron beam nanosculpting of suspended graphene sheets. Appl Phys Lett 93(11):113107

    Google Scholar 

  59. Lehtinen O, Kotakoski J, Krasheninnikov A, Keinonen J (2011) Cutting and controlled modification of graphene with ion beams. Nanotechnology 22(17):175306

    CAS  PubMed  Google Scholar 

  60. He K, Robertson AW, Gong C, Allen CS, Xu Q, Zandbergen H, Grossman JC, Kirkland AI, Warner JH (2015) Controlled formation of closed-edge nanopores in graphene. Nanoscale 7(27):11602–11610

    CAS  PubMed  Google Scholar 

  61. Kuan AT, Golovchenko JA (2012) Nanometer-thin solid-state nanopores by cold ion beam sculpting. Appl Phys Lett 100(21):213104

    PubMed  PubMed Central  Google Scholar 

  62. Lu N, Wang J, Floresca HC, Kim MJ (2012) In situ studies on the shrinkage and expansion of graphene nanopores under electron beam irradiation at temperatures in the range of 400–1200 C. Carbon 50(8):2961–2965

    CAS  Google Scholar 

  63. Morin A, Lucot D, Ouerghi A, Patriarche G, Bourhis E, Madouri A, Ulysse C, Pelta J, Auvray L, Jede R (2012) FIB carving of nanopores into suspended graphene films. Microelectron Eng 97:311–316

    CAS  Google Scholar 

  64. Bell DC, Lemme MC, Stern LA, Williams JR, Marcus CM (2009) Precision cutting and patterning of graphene with helium ions. Nanotechnology 20(45):455301

    CAS  PubMed  Google Scholar 

  65. Wu X, Zhao H, Pei J (2015) Fabrication of nanopore in graphene by electron and ion beam irradiation: influence of graphene thickness and substrate. Comput Mater Sci 102:258–266

    CAS  Google Scholar 

  66. Bai J, Zhong X, Jiang S, Huang Y, Duan X (2010) Graphene nanomesh. Nat Nanotechnol 5(3):190

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Safron NS, Brewer AS, Arnold MS (2011) Semiconducting two-dimensional graphene nanoconstriction arrays. Small 7(4):492–498

    CAS  PubMed  Google Scholar 

  68. Cagliani A, Mackenzie DMA, Tschammer LK, Pizzocchero F, Almdal K, Bøggild P (2014) Large-area nanopatterned graphene for ultrasensitive gas sensing. Nano Res 7(5):743–754

    CAS  Google Scholar 

  69. Akhavan O (2010) Graphene nanomesh by ZnO nanorod photocatalysts. ACS Nano 4(7):4174–4180

    CAS  PubMed  Google Scholar 

  70. Gokus T, Nair R, Bonetti A, Bohmler M, Lombardo A, Novoselov K, Geim A, Ferrari AC, Hartschuh A (2009) Making graphene luminescent by oxygen plasma treatment. ACS Nano 3(12):3963–3968

    CAS  PubMed  Google Scholar 

  71. Huh S, Park J, Kim YS, Kim KS, Hong BH, Nam J-M (2011) UV/ozone-oxidized large-scale graphene platform with large chemical enhancement in surface-enhanced Raman scattering. ACS Nano 5(12):9799–9806

    CAS  PubMed  Google Scholar 

  72. Fan Z, Zhao Q, Li T, Yan J, Ren Y, Feng J, Wei T (2012) Easy synthesis of porous graphene nanosheets and their use in supercapacitors. Carbon 50(4):1699–1703

    CAS  Google Scholar 

  73. Liu J, Cai H, Yu X, Zhang K, Li X, Li J, Pan N, Shi Q, Luo Y, Wang X (2012) Fabrication of graphene nanomesh and improved chemical enhancement for Raman spectroscopy. J Phys Chem C 116(29):15741–15746

    CAS  Google Scholar 

  74. Wu X, Mu F, Zhao H (2018) Synthesis and potential applications of nanoporous graphene: a review. Proc Nat Res Soc 2(1):02003

    Google Scholar 

  75. Moreno C, Vilas-Varela M, Kretz B, Garcia-Lekue A, Costache MV, Paradinas M, Panighel M, Ceballos G, Valenzuela SO, Peña D (2018) Bottom-up synthesis of multifunctional nanoporous graphene. Science 360(6385):199–203

    CAS  PubMed  Google Scholar 

  76. Deng D, Pan X, Zhang H, Fu Q, Tan D, Bao X (2010) Freestanding graphene by thermal splitting of silicon carbide granules. Adv Mater 22(19):2168–2171

    CAS  PubMed  Google Scholar 

  77. Bosch-Navarro C, Coronado E, Martí-Gastaldo C, Sánchez-Royo J, Gómez MG (2012) Influence of the pH on the synthesis of reduced graphene oxide under hydrothermal conditions. Nanoscale 4(13):3977–3982

    CAS  PubMed  Google Scholar 

  78. Obraztsov AN (2009) Chemical vapour deposition: making graphene on a large scale. Nat Nanotechnol 4(4):212

    CAS  PubMed  Google Scholar 

  79. Russo P, Hu A, Compagnini G (2013) Synthesis, properties and potential applications of porous graphene: a review. Nano Lett 5(4):260–273

    Google Scholar 

  80. Safron NS, Kim M, Gopalan P, Arnold MS (2012) Barrier-guided growth of micro-and nano-structured graphene. Adv Mater 24(8):1041–1045

    CAS  PubMed  Google Scholar 

  81. Byun Y, Coskun A (2015) Bottom-up approach for the synthesis of a three-dimensional nanoporous graphene nanoribbon framework and its gas sorption properties. Chem Mater 27(7):2576–2583

    CAS  Google Scholar 

  82. Kidambi PR, Nguyen GD, Zhang S, Chen Q, Kong J, Warner J, Li AP, Karnik R (2018) Facile fabrication of large-area atomically thin membranes by direct synthesis of graphene with nanoscale porosity. Adv Mater 30(49):1804977

    Google Scholar 

  83. Fatemi SM, Foroutan M (2014) Study of the dynamic behavior of boron nitride nanotube (BNNT) and triton surfactant complexes using molecular dynamics simulations. Adv Sci Eng Med 6(5):583–590

    CAS  Google Scholar 

  84. Fatemi SM, Foroutan M (2014) Study of dispersion of boron nitride nanotubes by triton X-100 surfactant using molecular dynamics simulations. J Theor Comput Chem 13(07):1450063

    CAS  Google Scholar 

  85. Fatemi SM, Foroutan M (2015) Recent findings about ionic liquids mixtures obtained by molecular dynamics simulation. J Nanostruct Chem 5(3):243–253

    CAS  Google Scholar 

  86. Fatemi SM, Foroutan M (2013) Structure and dynamics of a nonionic surfactant within a carbon nanotube bundle by molecular dynamics simulation. J Colloid Sci Biotechnol 2(1):40–44

    CAS  Google Scholar 

  87. Fatemi SM, Foroutan M (2015) Study of dispersion of carbon nanotubes by Triton X-100 surfactant using molecular dynamics simulation. J Iran Chem Soc 12(11):1905–1913

    CAS  Google Scholar 

  88. Fatemi SM, Foroutan M (2017) Review of recent studies on interactions between polymers and nanotubes using molecular dynamic simulation. J Iran Chem Soc 14(2):269–283

    CAS  Google Scholar 

  89. Sh F, Mahmood S, Foroutan M (2016) Molecular dynamics simulations studies of triton surfactant-wrapped single-walled carbon nanotubes surface. J Adv Phys 5(2):129–133

    Google Scholar 

  90. Fatemi SM, Foroutan M (2016) Recent developments concerning the dispersion of carbon nanotubes in surfactant/polymer systems by MD simulation. J Nanostruct Chem 6(1):29–40

    CAS  Google Scholar 

  91. Foroutan M, Fatemi SJ, Fatemi SM (2020) A mini-review on dispersion and functionalization of boron nitride nanotubes. J Nanostruct Chem. https://doi.org/10.1007/s40097-020-00347-9

  92. Chen M, Soyekwo F, Zhang Q, Hu C, Zhu A, Liu Q (2018) Graphene oxide nanosheets to improve permeability and selectivity of PIM-1 membrane for carbon dioxide separation. J Ind Eng Chem 63:296–302

    CAS  Google Scholar 

  93. Cychosz KA, Thommes M (2018) Progress in the physisorption characterization of nanoporous gas storage materials. Engineering 4(4):559–566

    CAS  Google Scholar 

  94. Maurya M, Singh JK (2018) Treatment of flue gas using graphene sponge: a simulation study. J Phys Chem C 122(26):14654–14664

    CAS  Google Scholar 

  95. Ibrahim AF, Lin Y (2018) Synthesis of graphene oxide membranes on polyester substrate by spray coating for gas separation. Chem Eng Sci 190:312–319

    CAS  Google Scholar 

  96. Rea R, Ligi S, Christian M, Morandi V, Giacinti Baschetti M, De Angelis M (2018) Permeability and selectivity of ppo/graphene composites as mixed matrix membranes for CO2 capture and gas separation. Polymers 10(2):129

    PubMed Central  Google Scholar 

  97. Fatemi SM, Abbasi Z, Rajabzadeh H, Hashemizadeh SA, Deldar AN (2017) A review of recent advances in molecular simulation of graphene-derived membranes for gas separation. Eur Phys J D 71(7):194

    Google Scholar 

  98. Jiang D-e, Cooper VR, Dai S (2009) Porous graphene as the ultimate membrane for gas separation. Nano Lett 9(12):4019–4024

    CAS  PubMed  Google Scholar 

  99. Koenig SP, Wang L, Pellegrino J, Bunch JS (2012) Selective molecular sieving through porous graphene. Nat Nanotechnol 7(11):728

    CAS  PubMed  Google Scholar 

  100. Hauser AW, Schrier J, Schwerdtfeger P (2012) Helium tunneling through nitrogen-functionalized graphene pores: pressure-and temperature-driven approaches to isotope separation. J Phys Chem C 116(19):10819–10827

    CAS  Google Scholar 

  101. Mirbagheri M, Hill RJ (2017) Diffusion in randomly overlapping parallel pore and fiber networks: how pore geometry and surface mobility impact membrane selectivity. Ind Eng Chem Res 56(15):4517–4526

    CAS  Google Scholar 

  102. Nieszporek K, Pańczyk T, Nieszporek J (2018) The inhibition effect of water on the purification of natural gas with nanoporous graphene membranes. Beilstein J Nanotechnol 9(1):1906–1916

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Tronci G, Raffone F, Cicero G (2018) Theoretical study of nanoporous graphene membranes for natural gas purification. Appl Sci 8(9):1547

    Google Scholar 

  104. Du H, Li J, Zhang J, Su G, Li X, Zhao Y (2011) Separation of hydrogen and nitrogen gases with porous graphene membrane. J Phys Chem C 115(47):23261–23266

    CAS  Google Scholar 

  105. Shan M, Xue Q, Jing N, Ling C, Zhang T, Yan Z, Zheng J (2012) Influence of chemical functionalization on the CO 2/N 2 separation performance of porous graphene membranes. Nanoscale 4(17):5477–5482

    CAS  PubMed  Google Scholar 

  106. Wang Y, Yang Q, Zhong C, Li J (2017) Theoretical investigation of gas separation in functionalized nanoporous graphene membranes. Appl Surf Sci 407:532–539

    CAS  Google Scholar 

  107. Dai J, Yuan J, Giannozzi P (2009) Gas adsorption on graphene doped with B, N, Al, and S: a theoretical study. Appl Phys Lett 95(23):232105

    Google Scholar 

  108. Luo G, Liu L, Zhang J, Li G, Wang B, Zhao J (2013) Hole defects and nitrogen doping in graphene: implication for supercapacitor applications. ACS Appl Mater Interfaces 5(21):11184–11193

    CAS  PubMed  Google Scholar 

  109. Anand A, Unnikrishnan B, Mao J-Y, Lin H-J, Huang C-C (2018) Graphene-based nanofiltration membranes for improving salt rejection, water flux and antifouling–a review. Desalination 429:119–133

    CAS  Google Scholar 

  110. Muraru S, Ionita M (2020) Super carbonaceous graphene-based structure as a gas separation membrane: a non-equilibrium molecular dynamics investigation. Compos Part B 196:108140

    CAS  Google Scholar 

  111. Muraru S, Ionita M (2020) Computational methods towards increased efficiency design of graphene membranes for gas separation and water desalination. Rev Chem Eng 1:(ahead-of-print)

    Google Scholar 

  112. Wang S, Dai S, D-e J (2018) Continuously tunable pore size for gas separation via a bilayer nanoporous graphene membrane. ACS Appl Nano Mat 2(1):379–384

    Google Scholar 

  113. Wu T, Xue Q, Ling C, Shan M, Liu Z, Tao Y, Li X (2014) Fluorine-modified porous graphene as membrane for CO2/N2 separation: molecular dynamic and first-principles simulations. J Phys Chem C 118(14):7369–7376

    CAS  Google Scholar 

  114. Yuan Z, Benck JD, Eatmon Y, Blankschtein D, Strano MS (2018) Stable, temperature-dependent gas mixture permeation and separation through suspended nanoporous single-layer graphene membranes. Nano Lett 18(8):5057–5069

    CAS  PubMed  Google Scholar 

  115. Ambrosetti A, Silvestrelli PL (2014) Gas separation in nanoporous graphene from first principle calculations. J Phys Chem C 118(33):19172–19179

    CAS  Google Scholar 

  116. Lahoz-Martín FD, Martin-Calvo A, Gutiérrez-Sevillano JJ, Calero S (2018) Effect of light gases in the ethane/ethylene separation using zeolitic imidazolate frameworks. J Phys Chem C 122(15):8637–8646

    Google Scholar 

  117. Mohammadnezhad F, Feyzi M, Zinadini S (2019) A novel Ce-MOF/PES mixed matrix membrane; synthesis, characterization and antifouling evaluation. J Ind Eng Chem 71:99–111

    CAS  Google Scholar 

  118. Satilmis B, Lanč M, Fuoco A, Rizzuto C, Tocci E, Bernardo P, Clarizia G, Esposito E, Monteleone M, Dendisová M (2018) Temperature and pressure dependence of gas permeation in amine-modified PIM-1. J Membr Sci 555:483–496

    CAS  Google Scholar 

  119. Li D, Hu W, Zhang J, Shi H, Chen Q, Sun T, Liang L, Wang Q (2015) Separation of hydrogen gas from coal gas by graphene nanopores. J Phys Chem C 119(45):25559–25565

    CAS  Google Scholar 

  120. Sun C, Bai B (2018) Improved CO2/CH4 separation performance in negatively charged nanoporous graphene membranes. J Phys Chem C 122(11):6178–6185

    CAS  Google Scholar 

  121. Wang Y, Yang Q, Li J, Yang J, Zhong C (2016) Exploration of nanoporous graphene membranes for the separation of N 2 from CO 2: a multi-scale computational study. Phys Chem Chem Phys 18(12):8352–8358

    CAS  PubMed  Google Scholar 

  122. Razmkhah M, Mosavian MTH, Moosavi F, Ahmadpour A (2018) CO2 gas adsorption into graphene oxide framework: effect of electric and magnetic field. Appl Surf Sci 456:318–327

    CAS  Google Scholar 

  123. Wang P, Li W, Du C, Zheng X, Sun X, Yan Y, Zhang J (2017) CO2/N2 separation via multilayer nanoslit graphene oxide membranes: molecular dynamics simulation study. Comput Mater Sci 140:284–289

    CAS  Google Scholar 

  124. Jiang H, Cheng X-L (2018) Simulations on methane uptake in tunable pillared porous graphene hybrid architectures. J Mol Graph Model 85:223–231

    CAS  PubMed  Google Scholar 

  125. Jin B, Zhang X, Li F, Zhang N, Zong Z, Cao S, Li Z, Chen X (2019) Influence of nanopore density on ethylene/acetylene separation by monolayer graphene. Phys Chem Chem Phys 21(11):6126–6132

    CAS  PubMed  Google Scholar 

  126. Sun C, Boutilier MS, Au H, Poesio P, Bai B, Karnik R, Hadjiconstantinou NG (2014) Mechanisms of molecular permeation through nanoporous graphene membranes. Langmuir 30(2):675–682

    CAS  PubMed  Google Scholar 

  127. Hauser AW, Schwerdtfeger P (2012) Methane-selective nanoporous graphene membranes for gas purification. Phys Chem Chem Phys 14(38):13292–13298

    CAS  PubMed  Google Scholar 

  128. Azamat J, Khataee A, Joo SW (2015) Molecular dynamics simulation of trihalomethanes separation from water by functionalized nanoporous graphene under induced pressure. Chem Eng Sci 127:285–292

    CAS  Google Scholar 

  129. Chen Q, Yang X (2015) Pyridinic nitrogen doped nanoporous graphene as desalination membrane: molecular simulation study. J Membr Sci 496:108–117

    CAS  Google Scholar 

  130. Sun C, Wen B, Bai B (2015) Application of nanoporous graphene membranes in natural gas processing: molecular simulations of CH4/CO2, CH4/H2S and CH4/N2 separation. Chem Eng Sci 138:616–621

    CAS  Google Scholar 

  131. Wei S, Zhou S, Wu Z, Wang M, Wang Z, Guo W, Lu X (2018) Mechanistic insights into porous graphene membranes for helium separation and hydrogen purification. Appl Surf Sci 441:631–638

    CAS  Google Scholar 

  132. Wang Y, Wang W, Zhu S, Guo L, Zhang Z, Li P (2018) The mechanisms study of the porous graphene for the purification of the mixed gases: a multi-scale computational method. Comput Mater Sci 143:277–285

    CAS  Google Scholar 

  133. Sun C, Liu M, Bai B (2019) Molecular simulations on graphene-based membranes. Carbon 153:481–494

    CAS  Google Scholar 

  134. Yuan Z, Misra RP, Rajan AG, Strano MS, Blankschtein D (2019) Analytical prediction of gas permeation through graphene nanopores of varying sizes: understanding transitions across multiple transport regimes. ACS Nano 13(10):11809–11824

    CAS  PubMed  Google Scholar 

  135. Jia M, Feng Y, Liu S, Qiu J, Yao J (2017) Graphene oxide gas separation membranes intercalated by UiO-66-NH2 with enhanced hydrogen separation performance. J Membr Sci 539:172–177

    CAS  Google Scholar 

  136. Lin L-C, Grossman JC (2015) Atomistic understandings of reduced graphene oxide as an ultrathin-film nanoporous membrane for separations. Nat Commun 6:8335

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Arabieh M, Fatemi SM, Sepehrian H (2016) Molecular perspective of radionuclides separation by nanoporous graphene oxide membrane. Chem Prod Process Model 11(1):3–5

    CAS  Google Scholar 

  138. Fatemi SM, Arabieh M, Sepehrian H (2015) Nanoporous graphene oxide membrane and its application in molecular sieving. Carbon Lett 16(3):183–191

    Google Scholar 

  139. Khakpay A, Rahmani F, Nouranian S, Scovazzo P (2017) Molecular insights on the CH4/CO2 separation in nanoporous graphene and graphene oxide separation platforms: adsorbents versus membranes. J Phys Chem C 121(22):12308–12320

    CAS  Google Scholar 

  140. Li W, Zheng X, Dong Z, Li C, Wang W, Yan Y, Zhang J (2016) Molecular dynamics simulations of CO2/N2 separation through two-dimensional graphene oxide membranes. J Phys Chem C 120(45):26061–26066

    CAS  Google Scholar 

  141. Liu Q, Gupta KM, Xu Q, Liu G, Jin W (2019) Gas permeation through double-layer graphene oxide membranes: the role of interlayer distance and pore offset. Sep Purif Technol 209:419–425

    CAS  Google Scholar 

  142. Fatemi SM, Sepehrian H, Arabieh M (2016) Simulation studies of the separation of Kr-85 radionuclide gas from nitrogen and oxygen across nanoporous graphene membranes in different pore configurations. Eur Phys J Plus 131(5):131

    Google Scholar 

  143. Fatemi SM, Sepehrian H, Arabieh M (2017) Selective nanopores in graphene sheet for separation I-129 isotope from air. J Adv Phys 6(1):10–17

    Google Scholar 

  144. Sun C, Bai B (2017) Fast mass transport across two-dimensional graphene nanopores: nonlinear pressure-dependent gas permeation flux. Chem Eng Sci 165:186–191

    CAS  Google Scholar 

  145. Nieszporek K, Drach M (2015) Alkane separation using nanoporous graphene membranes. Phys Chem Chem Phys 17(2):1018–1024

    CAS  PubMed  Google Scholar 

  146. Yuan Z, Govind Rajan A, Misra RP, Drahushuk LW, Agrawal KV, Strano MS, Blankschtein D (2017) Mechanism and prediction of gas permeation through sub-nanometer graphene pores: comparison of theory and simulation. ACS Nano 11(8):7974–7987

    CAS  PubMed  Google Scholar 

  147. Wang W, Hou Q, Gong K, Yan Y, Zhang J (2019) Ionic liquid gated 2D-CAP membrane for highly efficient CO2/N2 and CO2/CH4 separation. Appl Surf Sci 494:477–483

    CAS  Google Scholar 

  148. Liu W, Jiang S-D, Yan Y, Wang W, Li J, Leng K, Japip S, Liu J, Xu H, Liu Y (2020) A solution-processable and ultra-permeable conjugated microporous thermoset for selective hydrogen separation. Nat Commun 11(1):1–8

    CAS  Google Scholar 

  149. Lin H, Gong K, Ying W, Chen D, Zhang J, Yan Y, Peng X (2019) CO2-philic separation membrane: deep eutectic solvent filled graphene oxide nanoslits. Small 15(49):1904145

    CAS  Google Scholar 

  150. Ying W, Zhou K, Hou Q, Chen D, Guo Y, Zhang J, Yan Y, Xu Z, Peng X (2019) Selectively tuning gas transport through ionic liquid filled graphene oxide nanoslits using an electric field. J Mater Chem A 7(25):15062–15067

    CAS  Google Scholar 

  151. Pedrielli A, Taioli S, Garberoglio G, Pugno NM (2018) Gas adsorption and dynamics in pillared graphene frameworks. Microporous Mesoporous Mater 257:222–231

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Seyed Mahmood Fatemi: conceptualization; investigation; methodology; writing—original draft; writing—review; and editing. Zeynab Abbasi: writing—review and editing. Seyed Jamilaldin Fatemi: supervision and validation.

Corresponding authors

Correspondence to Seyed Jamilaldin Fatemi or Zeynab Abbasi.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fatemi, S.M., Fatemi, S.J. & Abbasi, Z. Gas separation using graphene nanosheet: insights from theory and simulation. J Mol Model 26, 322 (2020). https://doi.org/10.1007/s00894-020-04581-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-04581-4

Keywords

Navigation