Skip to main content
Log in

Reactive molecular dynamics simulation of thermal decomposition for nitromethane/nano-aluminum composites

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The thermal decomposition of pure nitromethane (NM) and NM/nano-aluminum (Al) composites was simulated by reactive molecular dynamics with ReaxFF-lg corrected force field parameters. The initial decomposition pathway of NM molecules in pure NM is C–N bond rupture. However, NM is decomposed early by the initial pathway of N–O bond rupture when it mixes with nano-Al because of the strong attraction of Al to O. The decomposition process of NM/nano-Al can be divided into three stages: adsorption, slow decomposition, and rapid decomposition. The addition of nano-Al particles decreases the energy barrier in decomposition, increases the released energy, and reduces the decomposition temperature of NM. Adding 3% Al to the explosive can make the detonation pressure 3.083% higher than that of pure system. Compared with pure NM, the energy barrier of 16% Al composite is 25.63 kcal/mol lower and the energy released is 22.99 kcal/mol more. There is an optimal amount of Al contents being added to the NM composite by which the largest total numbers of gaseous products (N2, H2O, and CO2) are released. The effect of Al additives on CO2 production is the most obvious. The maximum detonation pressure can be achieved by adding an appropriate amount of nano-Al, which is similar to the experimental results.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Bernstein J (2018) Ab initio study of energy transfer rates and impact sensitivities of crystalline explosives. J. Chem. Phys. 148(8):084502

    PubMed  Google Scholar 

  2. Dilmaç AM, Spuling E, Meijere A, Bräse S (2017) Propellanes—from a chemical curiosity to “explosive” materials and natural products. Angew. Chem. Int. Edit. 56(21):5684–5718

    Google Scholar 

  3. Watkins EB, Velizhanin KA, Dattelbaum DM, Gustavsen RL, Aslam TD, Podlesak DW, Huber RC, Firestone MA, Ringstrand BS, Willey TM, Bagge-Hansen M, Hodgin RL, Lauderbach L, Buuren A, Sinclair N, Rigg PA, Seifert S, Gog T (2017) Evolution of carbon clusters in the detonation products of the triamino-trinitro-benzene (TATB)-based explosive PBX 9502. J. Phys. Chem. C 121(41):23129–23140.4

    CAS  Google Scholar 

  4. Mbugua A, Satija A, Lucht RP, Bane S (2020) Ignition and combustion characterization of single nitromethane and isopropyl nitrate monopropellant droplets under high-temperature and quasi-steady conditions. Combust Flame 212:295–308

    CAS  Google Scholar 

  5. Appalakondaiah S, Vaitheeswaran G, Lebegue S (2013) A DFT study on structural, vibrational properties, and quasiparticle band structure of solid nitromethane. J. Chem. Phys. 138(18):184705

    CAS  PubMed  Google Scholar 

  6. Chang J, Lian P, Wei DQ, Chen XR, Zhang QM, Gong ZZ (2010) Thermal decomposition of the solid phase of nitromethane: ab initio molecular dynamics simulations. Phys. Rev. Lett. 105(22):229902

    Google Scholar 

  7. Shrestha KP, Vin N, Hebinet O, Seidel L, Battin-Leclerc F, Zeuch T, Mauss F (2020) Insights into nitromethane combustion from detailed kinetic modeling-pyrolysis experiments in jet-stirred and flow reactors. Fuel 261:116349

    CAS  Google Scholar 

  8. Han SP, van Duin ACT, Goddard WA, Strachan A (2011) Thermal decomposition of condensed-phase nitromethane from molecular dynamics from ReaxFF reactive dynamics. J. Phys. Chem. B 115(20):6534–6540

    CAS  PubMed  Google Scholar 

  9. Rom N, Zybin SV, van Duin ACT, Goddard WA, Zeiri Y, Katz G, Kosloff R (2011) Density-dependent liquid nitromethane decomposition: molecular dynamics simulations based on ReaxFF. J. Phys. Chem. A 115(36):10181–10202

    CAS  PubMed  Google Scholar 

  10. Manaa MR, Reed EJ, Fried LE, Galli G, Gygi F (2004) Early chemistry in hot and dense nitromethane: molecular dynamics simulations. J. Chem. Phys. 120(21):10146–10153

    PubMed  Google Scholar 

  11. Zhong M, Qin H, Liu QJ, Jiang CL, Zhao F, Shang HL, Liu FS, Tang B (2019) A systematic study of the surface structures and energetics of CH3NO2 surfaces by first-principles calculations. J. Mol. Model. 25(6):164

    PubMed  Google Scholar 

  12. Mei Z, Li CF, Zhao FQ, Xu SY, Ju XH (2019) Reactive molecular dynamics simulation of thermal decomposition for nano-AlH3/TNT and nano-AlH3/CL-20 composites. J. Mater. Sci. 54(9):7016–7027

    CAS  Google Scholar 

  13. Mei Z, Li CF, Zhao FQ, Xu SY, Ju XH (2018) Reactive molecular dynamics simulation of thermal decomposition for nano-aluminized explosives. Phys. Chem. Chem. Phys. 20(46):29341–29350

    CAS  PubMed  Google Scholar 

  14. Li CF, Mei Z, Zhao FQ, Xu SY, Ju XH (2018) Molecular dynamic simulation for thermal decomposition of RDX with nano-AlH3 particles. Phys. Chem. Chem. Phys. 20(20):14192–14199

    CAS  PubMed  Google Scholar 

  15. Zhou ZQ, Chen JG, Yuan HY, Nie JX (2017) Effects of aluminum particle size on the detonation pressure of TNT/Al. Propell Explos Pyrot 42(12):1401–1409

    CAS  Google Scholar 

  16. He N, Xiang C, Li W, Zhang Q (2018) Experimental study on deflagrating characteristics of nitromethane-aluminum powder. Acta Armamentarii. 39(1):111–117

    Google Scholar 

  17. Wu HJ, Wang XJ, Zhao XL, Wu GD (2009) The study of fast reaction of nitromethane calytized by nano-aluminum. J Atom Mol Phys 26(5):896–902

    CAS  Google Scholar 

  18. Shun YY, Zhao YH, Guo HJ, Tian XL, Hou H (2020) Early stages of precipitation in gamma’ phase of a Ni-Al-Ti model alloy: phase-field and first-principles study. Sci. Adv. Mater. 12(5):746–754

    Google Scholar 

  19. Narayan A (2020) Effect of strain and doping on the polar metal phase in LiOsO3. J Phys-Condens mat 32(12):125501

    CAS  Google Scholar 

  20. Peng Q, Rahul WGY, Liu GR, Grimme S, De S (2015) Predicting elastic properties of β-HMX from first-principles calculations. J. Phys. Chem. B 119(18):5896–5903

    CAS  PubMed  Google Scholar 

  21. van Duin ACT, Dasgupta S, Loarant F, Goddard WA (2011) ReaxFF: a reactive force field for hydrocarbons. J. Phys. Chem. A 105(41):9396–9409

    Google Scholar 

  22. Chenoweth K, van Duin ACT, Persson P, Cheng MJ, Oxgaard J, Goddard WA (2008) Development and application of a ReaxFF reactive force field for oxidative dehydrogenation on vanadium oxide catalysts. J. Phys. Chem. A 112(37):14645–14654

    CAS  Google Scholar 

  23. Guan YL, Lou JP, Liu R, Ma HX, Song JR (2020) Reactive molecular dynamics simulation on thermal decomposition of n-heptane and methylcyclohexane initiated by nitroethane. Fuel 261:116447

    CAS  Google Scholar 

  24. Miao F, Cheng XL (2019) Effect of electric field on polarization and decomposition of RDX molecular crystals: a ReaxFF molecular dynamics study. J. Mol. Model. 26(1):2

    PubMed  Google Scholar 

  25. Vo T, Reeder B, Damone A, Newell P (2019) Effect of domain size, boundary, and loading conditions on mechanical properties of amorphous silica: a reactive molecular dynamics study. Nanomaterials. 10(1):54

    PubMed Central  Google Scholar 

  26. Stukowski A (2010) Visualization and analysis of atomistic simulation data with OVITO—the Open Visualization Tool. Model Sim Mater Sci Eng 18(1):015012

    Google Scholar 

  27. Nakamura T, Kawamoto S, Shinoda W (2015) Precise calculation of the local pressure tensor in Cartesian and spherical coordinates in LAMMPS. Comput. Phys. Commun. 190:120–128

    CAS  Google Scholar 

  28. Ye CC, Ju XH, Zhao FQ, Xu SY (2012) Adsorption and decomposition mechanism of 1,1-Diamino-2,2-dinitroethylene on Al(111) surface by periodic DFT calculations. Chinese J Chem 30(10):2539–2548

    CAS  Google Scholar 

  29. Ye CC, Zhao FQ, Xu SY, Ju XH (2013) Adsorption and decomposition mechanism of hexogen (RDX) on Al(111) surface by periodic DFT calculations. J. Mol. Model. 19(6):2451–2458

    CAS  PubMed  Google Scholar 

  30. Ye CC, Zhao FQ, Xu SY, Ju XH (2013) Density functional theory studies on adsorption and decomposition mechanism of FOX-7 on Al-13 clusters. Can. J. Chem. 91(12):1207–1212

    CAS  Google Scholar 

  31. Ye CC, An Q, Xu SY, Ju XH (2017) Adsorption and decomposition of HMX and CL-20 on Al(111) surface by DFT investigation. Surf. Interface Anal. 49(5):441–449

    CAS  Google Scholar 

  32. Ao W, Liu X, Rezaiguia H, Liu H, Wang ZX, Liu PJ (2017) Aluminum agglomeration involving the second mergence of agglomerates on the solid propellants burning surface: experiments and modeling. Acta Astronaut 136:219–229

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue-Hai Ju.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 62 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, XK., Zhao, Y., Zhao, FQ. et al. Reactive molecular dynamics simulation of thermal decomposition for nitromethane/nano-aluminum composites. J Mol Model 26, 300 (2020). https://doi.org/10.1007/s00894-020-04562-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-04562-7

Keywords

Navigation