Skip to main content
Log in

Modeling water purification by an aquaporin-inspired graphene-based nano-channel

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Understanding the mechanism of water and particle transport through thin-film membranes is essential to improve the water permeability and the salt rejection rate of the purification progress. In this research, mimicking from the structure and operation of the aquaporin channel, graphene-based nano-channels were designed to be used as a water filter. The effects of variation of the channel’s main elements, such as the width of the bottleneck and charges attached to the channel on its efficiency, were investigated via molecular dynamics simulations. We observe that the water flow through the channel decreases by increasing the charge, while the ion rejection rate of the channel is enhanced. Moreover, we find that the geometry and shape of the bottleneck part of the channel can affect the channel water flow and its selectivity. Finally, the pressure and the flow velocity in the channel were considered by using finite element models, and the results indicate that they are high at the entrance of the channel. The outcomes of this study can be used to improve the molecular knowledge of water desalination, which might be helpful in designing more efficient membranes.

As the piston pushed the solution to pass through the nano-channel, positive and negative ions are remained in the first box, by sensing electric field generated from the attached charges to the bottleneck part of the channel. Atomistic structure of channel is shown in the right part of the figure and the generated electric field is shown in the left part of the figure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Preston GM, Carroll TP, Guggino WB, Agre P (1992) Appearance of water channels in Xenopus oocytes expressing red-cell CHIP28 protein. Science 256:385–387

    Article  CAS  Google Scholar 

  2. Murata K, Mitsuoka K, Hirai T, Walz T, Agre P, Heymann JB, Engel A, Fujiyoshi Y (2000) Structural determinants of water permeation through aquaporin-1. Nature 407:599–605

    Article  CAS  Google Scholar 

  3. Tajkhorshid E, Nollert P, Jensen MØ, Miercke LJW, O’Connell J, Stroud RM, Schulten K (2002) Control of the selectivity of the aquaporin water channel family by global orientational tuning. Science 296:525–530

    Article  CAS  Google Scholar 

  4. Vidossich P, Cascella M, Carloni P (2004) Dynamics and energetic of water permeation through the aquaporin channel. Proteins 55:924–931

    Article  CAS  Google Scholar 

  5. Aponte-Santamaría C, Fischer G, Båth P, Neutze R, de Groot BL (2017) Temperature dependence of protein-water interactions in a gated yeast aquaporin. Sci. Rep. 7(1):4016

    Article  Google Scholar 

  6. Saboe PO, Rapisarda C, Kaptan S, Hsiao YS, Summers SR, Zorzi RD, Dukovski D, Yu J, de Groot BL, Kumar M, Walz T (2017) Role of pore-lining residues in defining the rate of water conduction by aquaporin-0. Biophys. J. 112(14):953–965

    Article  CAS  Google Scholar 

  7. de Groot BL, Grubmuller H (2001) Water permeation across biological membranes: mechanism and dynamics of aquaporin-1 and GlpF. Science 294:2353–2357

    Article  Google Scholar 

  8. Lohrasebi A, Rafii-Tabar H (2008) Computational modeling of an ion-driven nanomotor. Journal of Molecular Graphics and Modeling 27:116–123

    Article  CAS  Google Scholar 

  9. Gong X, Li J, Lu H, Wan R, Li J, Hu J, Fang H (2007) A charge-driven molecular water pump. Nature 2:709–712

    CAS  Google Scholar 

  10. Chen M, Zang J, Xiao D, Zhang C, Liu F (2009) Nanopumping molecules via a carbon nanotube. Nano Res. 2:938–944

    Article  CAS  Google Scholar 

  11. Lohrasebi A, Feshanjerdi M (2012) A rotary nano ion pump: a molecular dynamics study. J. Mol. Model. 18:4191–4197

    Article  CAS  Google Scholar 

  12. Rikhtehgaran S, Lohrasebi A (2015) Water desalination by a designed nano filter of graphene-charged carbon nanotube: a molecular dynamics study. Desalination 365:176–181

    Article  CAS  Google Scholar 

  13. Surwade SP, Smirnov SN, Vlassiouk IV, Unocic RR, Veith GM, Dai S, Mahurin SM (2015) Water desalination using nanoporous single-layer graphene. Nat. Nanotechnol. 10:459–464

    Article  CAS  Google Scholar 

  14. Wu K, Chen Z, Li J, Li X, Xu J, Dong X (2017) Wettability effect on nanoconfined water flow. PNAS 114:3358–3363

    Article  CAS  Google Scholar 

  15. Cohen-Tanugi D, Grossman JC (2015) Nanoporous graphene as a reverse osmosis membrane: recent insights from theory and simulation. Desalination 366:59–70

    Article  CAS  Google Scholar 

  16. Sun P, Wang K, Zhu H (2016) Recent developments in graphene-based membranes: structure. Mass-Transport Mechanism and Potential Applications, Advanced Materials 28:2287–2310

    CAS  PubMed  Google Scholar 

  17. Lohrasebi A, Rikhtehgaran S (2018) Ion separation and water purification by applying external electric field on porous graphene membrane. Nano Res. 11(4):2229–2236

    Article  CAS  Google Scholar 

  18. Cohen-Tanugi D, Lin LC, Grossman JC (2016) Multilayer nanoporous graphene membranes for water desalination. Nano Lett. 16:1027–1033

    Article  CAS  Google Scholar 

  19. Neek-Amal M, Lohrasebi A, Mousaei M, Radha B, Peeters FM (2018) Fast water flow through graphene nanocapillaries: a continuum model approach involving the microscopic structure of confined water. Appl. Phys. Lett. 113(8):083101–083106

    Article  Google Scholar 

  20. Kargar M, Khasheii F, Lohrasebi A (2018) Influence of electric fields on the efficiency of multilayer graphene membrane. J. Mol. Model. 24:241

    Article  CAS  Google Scholar 

  21. Qiu H, Zeng XC, Guo W (2015) Water in inhomogeneous nanoconfinement: coexistence of multilayered liquid and transition to ice nanoribbons. ACS Nano 9:9877–9884

    Article  CAS  Google Scholar 

  22. Joly L, Tocci G, Merabia S, Michaelides A (2016) Strong coupling between nanofluidic transport and interfacial chemistry: how defect reactivity controls liquid–solid friction through hydrogen bonding. J. Phys. Chem. Lett. 7(7):1381–1386

    Article  CAS  Google Scholar 

  23. Walther JH, Ritos K, Cruz-Chu ER, Megaridis CM, Koumoutsakos P (2013) Barriers to superfast water transport in carbon nanotube membranes. Nano Lett. 13(5):1910–1914

    Article  CAS  Google Scholar 

  24. Kargar M, Lohrasebi A (2019) Water flow modeling through the graphene-based nanochannel: theory and simulation. Phys. Chem. Chem. Phys. 21:3304–3309

    Article  CAS  Google Scholar 

  25. Chakraborty S, Kumar H, Dasgupta C, Maiti PK (2017) Confined water: structure, dynamics, and thermodynamics. Acc. Chem. Res 50(9):2139–2146

    Article  CAS  Google Scholar 

  26. Giri AK, Teixeira F, Natália M, Cordeiro DS (2019) Salt separation from water using graphene oxide nanochannels: a molecular dynamics simulation study. Desalination 460:1–14

    Article  CAS  Google Scholar 

  27. Giri AK, Teixeira F, Natália M, Cordeiro DS (2018) Structure and kinetics of water in highly confined conditions: a molecular dynamics simulation study. J. Mole. Liq. 268:625–636

    Article  CAS  Google Scholar 

  28. Cheng C, Jiang G, Garvey CJ, Wang Y, Simon GP, Liu JZ, Li D (2016) Ion transport in complex layered graphene-based membranes with tuneable interlayer spacing. Sci. Adv. 2:1501272

    Article  Google Scholar 

  29. Hong S, Constans C, Surmani Martins MV, Seow YC, Guevara Carrió JA, Garaj S (2017) Scalable graphene-based membranes for ionic sieving with ultrahigh charge selectivity. Nano Lett. 17:728–732

    Article  CAS  Google Scholar 

  30. Zhou X, Wu F, Kou J, Nie X, Liu Y, Lu H (2013) Vibrating-charge-driven water pump controlled by the deformation of the carbon nanotube. J. Phys. Chem. B 117(39):11681–11686

    Article  CAS  Google Scholar 

  31. Wan X, Steudle E, Hartung W (2004) Gating of water channels (aquaporins) in cortical cells of young corn roots by mechanical stimuli (pressure pulses): effects of ABA and of HgCl 2. J. Exp. Bot. 55(396):411–422

    Article  CAS  Google Scholar 

  32. Abraham J, Vasu KS, Williams CD, Gopinadhan K, Su Y, Cherian CT, Dix J, Prestat E, Haigh SJ, Grigorieva IV, Carbone P, Geim AK, Nair RR (2017) Tuneable sieving of ions using graphene oxide membranes. Nat. Nanotechnol. 12(6):546–550

    Article  CAS  Google Scholar 

  33. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117:1–19

    Article  CAS  Google Scholar 

  34. SJ Tuart, AB Tutein, JA Harrison (2000) A reactive potential for hydrocarbons with intermolecular interactions, J. Chem. Phys. 112, 6472–6486

  35. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79:926–935

    Article  CAS  Google Scholar 

  36. Allen M, Tildesley DJ (1987) Computer simulation of liquids. Oxford University Press, New York

    Google Scholar 

  37. COMSOL Multiphysics. Key: citeulike: 3255057

  38. Conway BE (1981) Ionic hydration in chemistry and biophysics. Elsevier Science, Ltd.

    Google Scholar 

  39. Zeidel ML, Ambudkar SV, Smith BL, Agre P (1992) Water permeability of asymmetric planar lipid bilayers. Biochemistry 31:7436–7440

    Article  CAS  Google Scholar 

  40. Kumar M, Grzelakowski M, Zilles J, Clark M, Meier W (2007) Highly permeable polymeric membranes based on the incorporation of the functional water channel protein Aquaporin Z. Proc. Natl Acad. Sci. 104:20719–20724

    Article  CAS  Google Scholar 

  41. Geng, J. et al. Stochastic transport through carbon nanotubes in lipid bilayers and live cell membranes. Nature514, 612–615 (2014)

    Article  CAS  Google Scholar 

  42. Tunuguntla RH et al (2017) Enhanced water permeability and tunable ion selectivity in subnanometer carbon nanotube porins. Science 357:792–796

    Article  CAS  Google Scholar 

  43. Garaj S, Hubbard W, Reina A, Kong J, Branton D, Golovchenko JA (2010) Graphene as a subnanometre trans-electrode membrane. Nature 467:190–194

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Lohrasebi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 614 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lohrasebi, A., Koslowski, T. Modeling water purification by an aquaporin-inspired graphene-based nano-channel. J Mol Model 25, 280 (2019). https://doi.org/10.1007/s00894-019-4160-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-019-4160-y

Keywords

Navigation