Skip to main content
Log in

Microscopic understanding of electrocatalytic reduction of CO2 on Pd-polyaniline composite: an ab initio study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The reaction mechanism for the electroreduction of CO2 on polyaniline (PANI) and its composite with a single palladium atom (Pd/PANI) has been investigated employing ab initio density functional theory. It is observed that the Pd/PANI composite can capture and activate CO2 more efficiently than those for the cases of individual systems (PANI and Pd atom). Moreover, it is found that both PANI and Pd/PANI show high selectivity for the formation of formic acid (HCOOH) over the methanol (CH3OH) production. The electroreduction of CO2 towards formic acid (HCOOH) follows two different pathways, depending on the catalyst: on PANI the formation of HCOOH occurs through the *COOH intermediate, whereas for the case of Pd/PANI, the same reaction proceeds through the formation of formate (*OCHO). While the formation of CH3OH from CO2 on PANI is not feasible, electroreduction of CO2 towards CH3OH on Pd/PANI occurs through the formation of CO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hansen J, Nazarenko L, Ruedy R, Sato M, Willis J, Del Genio A, Koch D, Lacis A, Lo K, Menon S, Novakov T, Perlwitz J, Russell G, Schmidt GA, Tausnev N (2005) Earth’s energy imbalance: Confirmation and implications. Science 308(5727): 1431. https://doi.org/10.1126/science.1110252. http://science.sciencemag.org/content/308/5727/1431

    Article  CAS  PubMed  Google Scholar 

  2. Behrens M (2014) Heterogeneous catalysis of CO2 conversion to methanol on copper surfaces - Behrens - 2014 - Angewandte Chemie international Edition - Wiley Online Library. Angew Chem Int Ed 53:12022. http://onlinelibrary.wiley.com/doi/10.1002/anie.201409282/full

    Article  CAS  Google Scholar 

  3. Goeppert A, Czaun M, Jones JP, Surya Prakash GK, Olah GA (2014) Recycling of carbon dioxide to methanol and derived products - closing the loop. Chem Soc Rev 43(23):7995. https://doi.org/10.1039/C4CS00122B

    Article  CAS  PubMed  Google Scholar 

  4. Porosoff MD, Yan B, Chen JG (2016) Catalytic reduction of CO2 by H2 for synthesis of CO, methanol and hydrocarbons: challenges and opportunities. Energy Environ Sci 9(1):62. https://doi.org/10.1039/C5EE02657A

    Article  CAS  Google Scholar 

  5. Reichenbach T, Mondal K, Jäger M, Vent-Schmidt T, Himmel D, Dybbert V, Bruix A, Krossing I, Walter M, Moseler M (2018) Ab initio study of CO2 hydrogenation mechanisms on inverse ZnO/cu catalysts. J Catal 360:168. https://doi.org/10.1016/j.jcat.2018.01.035. http://www.sciencedirect.com/science/article/pii/S0021951718300514

    Article  CAS  Google Scholar 

  6. Kattel S, Ramírez PJ, Chen JG, Rodriguez JA, Liu P (2017) Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts. Science 355(6331):1296. https://doi.org/10.1126/science.aal3573. http://science.sciencemag.org/content/355/6331/1296

    Article  CAS  PubMed  Google Scholar 

  7. Zheng W, Nayak S, Yuan W, Zeng Z, Hong X, Vincent KA, Edman Tsang SC (2016) A tunable metal–polyaniline interface for efficient carbon dioxide electro-reduction to formic acid and methanol in aqueous solution. Chem Comm 52(96):13901. https://doi.org/10.1039/C6CC07212G. http://pubs.rsc.org/en/Content/ArticleLanding/2016/CC/C6CC07212G

    Article  CAS  PubMed  Google Scholar 

  8. Weiran Z, Wing MH, Lin Y, Edman TSC (2017) Electroreduction of carbon dioxide to formic acid and methanol over a palladium/polyaniline catalyst in acidic solution: A study of the palladium size effect. Energ Technol 5(6):937. https://doi.org/10.1002/ente.201600659. https://onlinelibrary.wiley.com/doi/abs/10.1002/ente.201600659

    Article  CAS  Google Scholar 

  9. Shanmugam R, Thamaraichelvan A, Kuppusamy Ganesan T, Viswanathan B (2016) Carbon dioxide activation and transformation to HCOOH on metal clusters (M = Ni, Pd, Pt, Cu, Ag & Au) anchored on a polyaniline conducting polymer surface—an evaluation study by hybrid density functional theory. RSC Adv 6(103):100829. https://doi.org/10.1039/C6RA20715D. http://pubs.rsc.org/en/Content/ArticleLanding/2016/RA/C6RA20715D

    Article  CAS  Google Scholar 

  10. Azuma M, Hashimoto K, Hiramoto M, Watanabe M, Sakata T (1990) Electrochemical reduction of carbon dioxide on various metal electrodes in low-temperature aqueous KHCO3 media. J Electrochem Soc 137(6):1772. https://doi.org/10.1149/1.2086796. http://jes.ecsdl.org/content/137/6/1772.abstract

    Article  CAS  Google Scholar 

  11. Kuhl KP, Hatsukade T, Cave ER, Abram DN, Kibsgaard J, Jaramillo TF (2014) Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces. J Am Chem Soc 136(40):14107. https://doi.org/10.1021/ja505791r

    Article  CAS  PubMed  Google Scholar 

  12. Lee S, Ju H, Machunda R, Uhm S, Lee JK, Lee HJ, Lee J (2015) Sustainable production of formic acid by electrolytic reduction of gaseous carbon dioxide. J Mater Chem A 3(6):3029. https://doi.org/10.1039/C4TA03893B. http://pubs.rsc.org/en/content/articlelanding/2015/ta/c4ta03893b

    Article  CAS  Google Scholar 

  13. Chaplin R, Wragg A (2003) Effects of process conditions and electrode material on reaction pathways for carbon dioxide electroreduction with particular reference to formate formation. J Appl Electrochem 33(12):1107. https://doi.org/10.1023/B:JACH.0000004018.57792.b8

    Article  CAS  Google Scholar 

  14. Kas R, RKortlever R, Ylmaz H, Koper MTM, Mul G (2015) Manipulating the hydrocarbon selectivity of copper nanoparticles in CO2 electroreduction by process conditions. ChemElectroChem 2(3):354. https://doi.org/10.1002/celc.201402373. https://onlinelibrary.wiley.com/doi/abs/10.1002/celc.201402373

    Article  CAS  Google Scholar 

  15. Zhao C, Yin Z, Wang J (2015) Efficient electrochemical conversion of CO2 to HCOOH using pd-polyaniline/CNT nanohybrids prepared in situ. ChemElectroChem 2(12):1974. https://doi.org/10.1002/celc.201500328. https://onlinelibrary.wiley.com/doi/abs/10.1002/celc.201500328

    Article  CAS  Google Scholar 

  16. Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti GL, Cococcioni M, Dabo I, Corso AD, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen AP, Smogunov A, Umari P, Wentzcovitch RM (2009) Quantum espresso: a modular and open-source software project for quantum simulations of materials. Journal of Physics: Condensed Matter 21(39):395502. http://stacks.iop.org/0953-8984/21/i=39/a=395502

    PubMed  Google Scholar 

  17. Giannozzi P, Andreussi O, Brumme T, Bunau O, Nardelli MB, Calandra M, Car R, Cavazzoni C, Ceresoli D, Cococcioni M, Colonna N, Carnimeo I, Corso AD, de Gironcoli S, Delugas P, Jr RAD, Ferretti A, Floris A, Fratesi G, Fugallo G, Gebauer R, Gerstmann U, Giustino F, Gorni T, Jia J, Kawamura M, Ko HY, Kokalj A, Küçükbenli E, Lazzeri M, Marsili M, Marzari N, Mauri F, Nguyen NL, Nguyen HV, de-la Roza AO, Paulatto L, Poncé S, Rocca D, Sabatini R, Santra B, Schlipf M, Seitsonen AP, Smogunov A, Timrov I, Thonhauser T, Umari P, Vast N, Wu X, Baroni S (2017) Advanced capabilities for materials modelling with Quantum ESPRESSO. J Phys Condens Matter 29(46):465901. http://stacks.iop.org/0953-8984/29/i=46/a=465901

    Article  CAS  PubMed  Google Scholar 

  18. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865

    Article  CAS  PubMed  Google Scholar 

  19. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27(15):1787. https://doi.org/10.1002/jcc.20495. https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.20495

    Article  CAS  PubMed  Google Scholar 

  20. Marzari N, Vanderbilt D, De Vita A, Payne MC (1999) Thermal contraction and disordering of the Al(110) surface. Phys Rev Lett 82 :3296. https://doi.org/10.1103/PhysRevLett.82.3296. https://link.aps.org/doi/10.1103/PhysRevLett.82.3296

    Article  CAS  Google Scholar 

  21. Song JW, Giorgi G, Yamashita K, Hirao K (2013) Communication: Singularity-free hybrid functional with a Gaussian-attenuating exact exchange in a plane-wave basis. J Chem Phys 138(24):241101. https://doi.org/10.1063/1.4811775

    Article  CAS  PubMed  Google Scholar 

  22. Zhang Y, Yang W (1998) Comment on generalized gradient approximation made simple. Phys Rev Lett 80:890. https://doi.org/10.1103/PhysRevLett.80.890. https://link.aps.org/doi/10.1103/PhysRevLett.80.890

    Article  CAS  Google Scholar 

  23. Andreussi O, Dabo I, Marzari N (2012) Revised self-consistent continuum solvation in electronic-structure calculations. J Chem Phys 136(6):064102. https://doi.org/10.1063/1.3676407

    Article  CAS  PubMed  Google Scholar 

  24. Peterson AA, Abild-Pedersen F, Studt F, Rossmeisl J, Nørskov JK (2010) How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ Sci 3(9):1311. https://doi.org/10.1039/C0EE00071J. http://pubs.rsc.org/en/content/articlelanding/2010/ee/c0ee00071j

    Article  CAS  Google Scholar 

  25. Nørskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, Jónsson H (2004) Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J Phys Chem B 108(46):17886. https://doi.org/10.1021/jp047349j

    Article  CAS  Google Scholar 

  26. Manz TA, Limas NG (2016) Introducing DDEC6 atomic population analysis: Part 1. Charge partitioning theory and methodology. RSC Adv 6:47771. https://doi.org/10.1039/C6RA04656H

    Article  CAS  Google Scholar 

  27. Limas NG, Manz TA (2016) Introducing ddec6 atomic population analysis: Part 2. Computed results for a wide range of periodic and nonperiodic materials. RSC Adv 6:45727. https://doi.org/10.1039/C6RA05507A

    Article  CAS  Google Scholar 

  28. Sirois S, Castro M, Salahub DR (2004) A density functional study of the interaction of CO2 with a Pd atom. Int J Quantum Chem 52(28):645. https://doi.org/10.1002/qua.560520857. https://onlinelibrary.wiley.com/doi/abs/10.1002/qua.560520857

    Article  Google Scholar 

  29. Millikan RC, Pitzer KS (1957) Infrared spectra and vibrational assignment of monomeric formic acid. J Chem Phys 27(6):1305. https://doi.org/10.1063/1.1743996

    Article  CAS  Google Scholar 

  30. (1998) NIST-JANAF Thermochemical Tables

  31. Janik MJ, Taylor CD, Neurock M First-principles analysis of the initial electroreduction steps of oxygen over Pt(111), Electrochem Soc, Electrochem Soc -J, Electrochem Soc Soc-J, Electrochem Soc-J, Electrochem Sox-J, ELECTROCHEM.SOC., J ELECTROCHEM SOC, J Electrochem Soc 156(1). https://doi.org/10.1149/1.3008005, https://experts.umn.edu/en/publications/first-principles-analysis-of-the-initial-electroreduction-steps-o

  32. Tripkovic V, Skulason E, Siahrostami S, Nørskov JK, Rossmeisl J (2010) The oxygen reduction reaction mechanism on pt(111) from density functional theory calculations. Electrochimica Acta 55(27):7975. https://doi.org/10.1016/j.electacta.2010.02.056

    Article  CAS  Google Scholar 

  33. Graciani J, Mudiyanselage K, Xu F, Baber AE, Evans J, Senanayake SD, Stacchiola DJ, Liu P, Hrbek J, Sanz JF, Rodriguez JA (2014) Highly active copper–ceria and copper–ceria–titania catalysts for methanol synthesis from CO2. Science 345(6196):546 . http://science.sciencemag.org/content/345/6196/546

    Article  CAS  PubMed  Google Scholar 

  34. Philipp K, RajabhauBajirao U, Christoph K, Andreas J (2013) Production of liquid hydrocarbons with CO2 as carbon source based on reverse water–gas shift and Fischer–Tropsch synthesis. Chemie Ingenieur Technik 85 (4):489. https://doi.org/10.1002/cite.201200179. https://onlinelibrary.wiley.com/doi/abs/10.1002/cite.201200179

    Article  Google Scholar 

  35. Daza YA, Kuhn JN (2016) CO2 conversion by reverse water gas shift catalysis: comparison of catalysts, mechanisms and their consequences for CO2 conversion to liquid fuels. RSC Adv 6 (55):49675. https://doi.org/10.1039/C6RA05414E

    Article  CAS  Google Scholar 

  36. Uzunova EL, Seriani N, Mikosch H (2015) CO2 conversion to methanol on Cu(i) oxide nanolayers and clusters: an electronic structure insight into the reaction mechanism. Phys Chem Chem Phys 17(16):11088. https://doi.org/10.1039/C5CP01267H

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

AS would like to acknowledge INSPIRE, India, for providing a research fellowship. KM would like to acknowledge the Department of Science and Technology, India Grant No: EMR/2016/005275 for funding. PG would like to acknowledge the Department of Science and Technology, India Grant No: EMR/2016/005275 and Department of Science and Technology-Nanomission, India Grants No: SR/NM/NS-15/2011, SR/NM/NS-1285/2014 and SR/NM/TP-13/2016 for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prasenjit Ghosh.

Additional information

This paper is dedicated to Prof. Pratim Chattaraj, Indian Institute of Technology, Kharagpur, India on the occasion of his 60th birthday.

This paper belongs to Topical Collection International Conference on Systems and Processes in Physics, Chemistry and Biology (ICSPPCB-2018) in honor of Professor Pratim K. Chattaraj on his sixtieth birthday

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 17.5 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahu, A., Mondal, K. & Ghosh, P. Microscopic understanding of electrocatalytic reduction of CO2 on Pd-polyaniline composite: an ab initio study. J Mol Model 24, 248 (2018). https://doi.org/10.1007/s00894-018-3762-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-018-3762-0

Keywords

Navigation