Skip to main content
Log in

Stability and donor-acceptor bond in dinuclear organometallics CpM1–M2Cl3 (M1, M2 = B, Al, Ga, In; Cp = η 5–C5H5)

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The geometries and stabilities of the dinuclear organometallics CpM1–M2Cl3 (M1, M2 = B, Al, Ga, In; Cp = η 5-C5H5) have been investigated by density functional theory (DFT) at M06 L/6-311G(d, p) levels. The nature of the donor–acceptor M1 → M2 bond was also studied based on the atoms in molecules (AIM) theory, energy decomposition analysis (EDA) and natural bond orbital (NBO) analysis. The results show that the electronegativity of the M atom determines the stability and covalent character of the dinuclear organometallics CpM1–M2Cl3. The compounds in which the M with larger electronegativity acts as the donor are more stable than in those in which it acts as the acceptor in the donor–acceptor bond, and the donor–acceptor bond has more covalent characteristics. The strength and polarity of the M1 → M2 donor–acceptor bond is determined by the periodicity of the M atom. When the period number of the M1 atom is smaller than that of M2, the strength of the M1 → M2 bond is larger than that of the M2 → M1 bond. For homonuclear dinuclear organometallics, the polarity of the M–M bond increases with increasing atomic number of the M atom. For heteronuclear complexes, the polarity of the M1–M2 bond for a given M1 also increases in the sequence of M2 = B, Al, Ga, and In.

Molecular graph and electron location function isosurfaces map of CpM 1 –M 2 Cl 3(small red spheres represent bond critical points)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Melton CE, Dube JW, Ragogna PJ, Fettinger JC, Power PP (2013) Synthesis and characterization of primary aluminum parent amides and Phosphides. Organometallics 33:329–337

    Article  Google Scholar 

  2. Huber M, Schnöckel H (2008) Al4(C5Me4H)4: structure, reactivity and bonding. Inorg Chim Acta 361:457–461

    Article  CAS  Google Scholar 

  3. Hardman NJ, Wright RJ, Phillips AD, Power PP (2003) Structures, bonding, and reaction chemistry of the neutral Organogallium (I) compounds (GaAr)n (n= 1 or 2)(Ar= Terphenyl or related Ligand): an experimental investigation of Ga–Ga multiple bonding. J Am Chem Soc 125:2667–2679

  4. Dohmeier C, Robl C, Tacke M, Schnöckel PD (1991) The tetrameric aluminium (I) compound [{al (η5-C5Me5)} 4]. Angew Chem Int Ed Eng 103:594–595

    Article  CAS  Google Scholar 

  5. Minasian SG, Krinsky JL, Williams VA, Arnold J (2008) A heterobimetallic complex with an unsupported uranium (III)− aluminum (I) bond:(CpSiMe3)3U− AlCp*(cp*= C5Me5). J Am Chem Soc 130:10086–10087

    Article  CAS  Google Scholar 

  6. Caputo C, Koivistoinen J, Moilanen J, Boynton JN, Tuononen HM, Power PP (2013) Counterintuitive mechanisms of the addition of hydrogen and simple olefins to heavy group 13 alkene analogues. J Am Chem Soc 135:1952–1960

    Article  CAS  Google Scholar 

  7. Brown ZD, Vasko P, Fettinger JC, Tuononen HM, Power PP (2012) A germanium isocyanide complex featuring (n → π*) back-bonding and its conversion to a hydride/cyanide product via C–H bond activation under mild conditions. J Am Chem Soc 134:4045–4048

    Article  CAS  Google Scholar 

  8. Zhang Q, Li WL, Xu CQ, Chen M, Zhou M, Li J, Andrada DM, Frenking G (2015) Formation and characterization of the boron dicarbonyl complex [B(CO)2]−. Angew Chem Int Ed 127:11230–11235

    Article  Google Scholar 

  9. Dube JW, Brown ZD, Caputo CA, Power PP, Ragogna PJ (2014) Activation of gaseous PH3 with low coordinate diaryltetrylene compounds. Chem Commun 50:1944

    Article  CAS  Google Scholar 

  10. Beamish JC, Small RWH, Worrall IJ (1979) Neutral complexes of gallium (II) containing gallium–gallium bonds. Inorg Chem 18:220–223

    Article  CAS  Google Scholar 

  11. Uhl W (1993) Organoelement compounds with Al–Al, Ga–Ga, and In-In bonds. Angew Chem Int Ed Eng 32:1386–1397

  12. Wright RJ, Brynda M, Power PP (2006) Synthesis and structure of the “Dialuminyne” Na2[Ar′AlAlAr′] and Na2[(Ar′′al)3]: Al–Al bonding in Al2Na2 and Al3Na2 clusters. Angew Chem Int Ed 45:5953–5956

    Article  CAS  Google Scholar 

  13. Fischer RC, Power PP (2010) π-Bonding and the lone pair effect in multiple bonds involving heavier main group elements: developments in the new millennium. Chem Rev 110:3877–3923

    Article  CAS  Google Scholar 

  14. Cowley AH (2004) From group 13-group 13 donor-acceptor bonds to triple-decker cations. Chem Commun 21:2369–2375

    Article  Google Scholar 

  15. Schulz S, Kuczkowski A, Schuchmann D, Flörke U, Nieger M (2006) Group13–group13 donor-acceptor complexes. Organometallics 25:5487–5491

  16. Macdonald CLB, Gorden JD, Voigt A, Cowley AH (2000) Synthesis and characterization of the first example of a gallocenium cation. J Am Chem Soc 122:11725–11726

    Article  CAS  Google Scholar 

  17. Greiwe P, Bethäuser A, Pritzkow H, Kühler T, Jutzi P, Siebert W (2000) Borane-stabilized Boranediyls (Borylenes): neutral nido-1-Borane-2,3,4,5,6-pentamethyl-2,3,4,5,6-pentacarbahexaboranes (6). Eur J Inorg Chem 2000:1927–1929

    Article  Google Scholar 

  18. Gorden JD, Macdonald CLB, Cowley AH (2001) A valence isomer of a dialane. Chem Commun 1:75–76

    Article  Google Scholar 

  19. Kuchta MC, Bonanno JB, Parkin G (1996) A monovalent gallium complex supported by Tris (3, 5-di-tert-butylpyrazolyl) hydroborato ligation: the syntheses and structures of [TpBut2] Ga and its GaI3 adduct, [TpBut2] Ga→ GaI3 1. J Am Chem Soc 118:10914–10915

    Article  CAS  Google Scholar 

  20. Frazer A, Hodge P, Piggott B (1996) Novel redox properties of HB(3-Butpz)3 as shown by its reaction with InIII and SnIV. Chem Commun 15:1727–1728

    Article  Google Scholar 

  21. Hardman NJ, Power PP, Gorden JD, Macdonald CLB, Cowley AH (2001) Gallium–boron donor–acceptor bonds. Chem Commun 18:1866–1867

    Article  Google Scholar 

  22. Timoshkin AY, Frenking G (2002) Low-Valent group 13 chemistry. Theoretical investigation of the structures and relative stabilities of donor-acceptor complexes R3E-E 'R 'and their isomers R2E-E 'RR ' J Am Chem Soc 124:7240–7248

    Article  CAS  Google Scholar 

  23. Wang Y, Robinson GH (2007) Organometallics of the group 13 M–M bond (M= Al, Ga, In) and the concept of metalloaromaticity. Organometallics 26:2–11

    Article  CAS  Google Scholar 

  24. Huo S, Meng D, Zhang X, Meng L, Li X (2014) Bonding analysis of the donor–acceptor sandwiches CpE-MCp (E = B, al, Ga; M = Li, Na, K; cp = η5-C5H5). J Mol Model 20:2455

    Article  Google Scholar 

  25. Li X, Huo S, Zeng Y, Zheng S, Meng L (2013) Metal–metal and metal–ligand bonds in (η5–C5H5)2M2 (M = Be, Mg, Ca, Ni, Cu, Zn). Organometallics 32:1060–1066

    Article  CAS  Google Scholar 

  26. Roesky PW (2009) Compounds with low-valent group 13 metals as ligands for electron poor main group and transition metals. Dalton Trans 11:1887–1893

    Article  Google Scholar 

  27. Kim EK, Bockman TM, Kochi JK (1993) Electron-transfer mechanism for aromatic nitration via the photoactivation of EDA complexes. Direct relationship to electrophilic aromatic substitution. J Am Chem Soc 115:3091–3104

    Article  CAS  Google Scholar 

  28. Compaan KR, Wilke JJ, Schaefer III HF (2011) Aluminum foils: the contrasting characters of hyperconjugation and steric repulsion in aluminum dimetallocenes. J Am Chem Soc 133:13387–13396

    Article  CAS  Google Scholar 

  29. Grützmacher H, Fässler TF (2015) Topographical analyses of homonuclear multiple bonds between main group elements. Chem Eur J 6:2317–2325

    Article  Google Scholar 

  30. Zhao Y, Truhlar DG (2006) A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. J Chem Phys 125:194101

    Article  Google Scholar 

  31. Wong MW, Gill PMW, Nobes RH, Radom L (1988) 6-311G (MC)(d, p): a second-row analogue of the 6-311G (d, p) basis set: calculated heats of formation for second-row hydrides. J Phys Chem 92:4875–4880

    Article  CAS  Google Scholar 

  32. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.1. Gaussian, Inc., Wallingford

    Google Scholar 

  33. Popelier P (2000) Atoms in molecules—an introduction. UMIST, Manchester

    Google Scholar 

  34. Bader RFW (1994) Atoms in molecules: a quantum theory. Oxford University Press, Oxford

    Google Scholar 

  35. Keith TA (2012) AIMALL, 13.02.26. Available at: http://aim.tkgristmill.com

  36. Matito E, Silvi B, Duran M, Solà M (2006) Electron localization function at the correlated level. J Chem Phys 125:24301

    Article  Google Scholar 

  37. Noury S, Krokidis X, Fuster F, Silvi B (1999) Computational tools for the electron localization function topological analysis. Comput Chem 23:597–604

    Article  CAS  Google Scholar 

  38. Feixas F, Matito E, Duran M, Solà M, Silvi B (2010) Electron localization function at the correlated level: a natural orbital formulation J Chem Theory Comput 6:2736–2742

    Article  CAS  Google Scholar 

  39. Flükiger P, Lüthi HP, Portmann S, Weber J (2000) MOLEKEL 4.0. J. Swiss Center for Scientific Computing, Manno

    Google Scholar 

  40. ADF2008.01, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands. Available from: http://www.scm.com

  41. van Lenthe E, Baerends EJ, Snijers JG (1994) Relativistic total energy using regular approximations. J Chem Phys 101:9783

    Article  Google Scholar 

  42. Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  43. Weinhold F (1997) Nature of H-bonding in clusters, liquids, and enzymes: an ab initio, natural bond orbital perspective. J Mol Struct THEOCHEM 398:181–197

    Article  Google Scholar 

  44. Cp*B-BCl3(ref 17); Cp*Al-B(C6F5)3(ref 16); Cp*Ga-B(C6F5)3(ref 22); Cp*Ga-Al(t-Bu)3(ref 15); Cp*In-Al(t-Bu)3 (ref 15); Cp*Al-Al(C6F5)3(ref 18); Cp*Ga-GaCl2Cp*: Jutzi P, Neumann B, Reumann G (2001) Lewis Acid− Base Adducts of Pentamethylcyclopentadienylgallium with Trivalent Group 13-Element Compounds. Organometallics 20:2854-2858; Cp*In-Ga(t-Bu)3 (ref 15)

  45. Pauling L (1932) The nature of the chemical bond. IV. The energy of single bonds and the relative electronegativity of atoms. J Am Chem Soc 54:3570–3582

    Article  CAS  Google Scholar 

  46. Zhang X, Li X, Zeng Y, Zheng S, Meng L (2015) Enhancing σ/π-type copper-thiophene interactions by metal doping (metal = Li, Na, K, ca, sc). Dalton Trans 44:1283–1291

    Article  CAS  Google Scholar 

  47. Lu F, Li X, Sun Z, Zeng Y, Meng L (2015) Influences of the substituents on the m-m bonding in Cp4Al4 and Cp2M2X2 (M = B, al, Ga; cp = C5H5, X = halogen). Dalton Trans 44:14092–14100

    Article  CAS  Google Scholar 

  48. Andrés J, Berski S, Feliz M, Llusar R, Sensato F, Silvi B (2005) The nature of the chemical bond in di-and polynuclear metal cluster complexes as depicted by the analysis of the electron localization function. C R Chim 8:1400–1412

    Article  Google Scholar 

  49. Savin A, Nesper R, Wengert S, Fässler T (1997) ELF: the electron localization function. Angew Chem Int Ed Eng 36:1808–1832

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Thanks to Elsevier Language Editing Services for editing this paper. This work was supported by the National Natural Science Foundation of China (NSFC; contract nos. 21372062, 21373075), the Natural Science Foundation of Hebei Province (contract no. B2016205042).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mei Qin or Xiaoyan Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dang, Y., Meng, L., Qin, M. et al. Stability and donor-acceptor bond in dinuclear organometallics CpM1–M2Cl3 (M1, M2 = B, Al, Ga, In; Cp = η 5–C5H5). J Mol Model 24, 7 (2018). https://doi.org/10.1007/s00894-017-3539-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-017-3539-x

Keywords

Navigation