Skip to main content
Log in

The functionalization of carbon nanotubes to enhance the efficacy of the anticancer drug paclitaxel: a molecular dynamics simulation study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Carbon nanotubes (CNTs) are widely used in drug delivery systems (DDSs) due to their unique chemical and physical properties. Investigation of interactions between biomolecules and CNTs is an interesting and important subject in biological applications. In this study, we used molecular dynamics (MD) simulation to investigate the adsorption mechanism of the anticancer drug paclitaxel (PTX) on pristine and functionalized CNTs (f-CNT) in aqueous solutions. Our theoretical results show that PTX can be adsorbed on sidewalls of CNT in different methods. In the case of f-CNTs, PTX can be adsorbed on the functional groups due to the existence of polar interactions. These interactions in the CNT functionalized with polyethylene glycol (PEG), are more than the other investigated systems. Furthermore, it was found that the solubility of CNTs in aqueous solution is increased by functionalization. This is related to the intermolecular hydrogen bonds between functional groups and solvent molecules. The PEG group has the greatest effect on the solubility of the CNT in aqueous solution due to more polar interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Cragg GM, Grothaus PG, Newman DJ (2009) Impact of natural products on developing new anti-cancer agents. Chem Rev 109:3012–3043

    Article  CAS  Google Scholar 

  2. Kushwaha S, Rastogi A, Rai A, Singh S (2012) Novel drug delivery system for anticancer drug: a review. SphinxsaiCom 4:542–553

    CAS  Google Scholar 

  3. Vashist SK, Zheng D, Pastorin G, et al. (2011) Delivery of drugs and biomolecules using carbon nanotubes. Carbon 49:4077–4097

    Article  CAS  Google Scholar 

  4. Rowinsky EK, Donehower RC (1995) Paclitaxel (taxol). N Engl J Med 332:1004–1014

    Article  CAS  Google Scholar 

  5. Ma P, Mumper RJ (2013) Paclitaxel nano-delivery systems: a comprehensive review. J Nanomed Nanotechnol 4:1000164

    Article  Google Scholar 

  6. Sun H, She P, Lu G, et al. (2014) Recent advances in the development of functionalized carbon nanotubes: a versatile vector for drug delivery. J Mater Sci 49:6845–6854. doi:10.1007/s10853-014-8436-4

    Article  CAS  Google Scholar 

  7. Jain KK (2012) Advances in use of functionalized carbon nanotubes for drug design and discovery. Expert Opin Drug Discov:1–9. doi:10.1517/17460441.2012.722078

  8. Lay CL, Liu HQ, Tan HR, Liu Y (2010) Delivery of paclitaxel by physically loading onto poly (ethylene glycol)(PEG)-graftcarbon nanotubes for potent cancer therapeutics. Nanotechnology 21:65101

    Article  Google Scholar 

  9. Arsawang U, Saengsawang O, Rungrotmongkol T, et al. (2011) How do carbon nanotubes serve as carriers for gemcitabine transport in a drug delivery system? J Mol Graph Model 29:591–596

    Article  CAS  Google Scholar 

  10. Li Z, Tozer T, Alisaraie L (2016) Molecular dynamics studies for optimization of noncovalent loading of vinblastine on single-walled carbon nanotube. J Phys Chem C 120:4061–4070

    Article  CAS  Google Scholar 

  11. Mousavi SZ, Amjad-Iranagh S, Nademi Y, Modarress H (2013) Carbon nanotube-encapsulated drug penetration through the cell membrane: an investigation based on steered molecular dynamics simulation. J Membr Biol 246:697–704

    Article  CAS  Google Scholar 

  12. Liu Z, Chen K, Davis C, et al. (2008) Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res 68:6652–6660

    Article  CAS  Google Scholar 

  13. http://www.jcrystal.com/products/wincnt/, Nanotube Modeler, JCrystalSoft Ed., 2004–2005

  14. Maata J, Vierros S, Van Tassel PR, Sammalkorpi M (2014) Size-selective, noncovalent dispersion of carbon nanotubes by PEGylated lipids: a coarse-grained molecular dynamics study. J Chem Eng Data 59:3080–3089

    Article  Google Scholar 

  15. Schmidt MW, Baldridge KK, Boatz JA, et al. (1993) General atomic and molecular electronic structure system. J Comput Chem 14:1347–1363

    Article  CAS  Google Scholar 

  16. Ghadamgahi M, Ajloo D (2015) Molecular dynamics insight into the urea effect on Tretinoin encapsulation into carbon nanotube. J Braz Chem Soc 26:185–195

    CAS  Google Scholar 

  17. Brooks BR, Brooks CL, MacKerell AD, et al. (2009) CHARMM: the biomolecular simulation program. J Comput Chem 30:1545–1614

    Article  CAS  Google Scholar 

  18. He Z, Zhou J (2014) Probing carbon nanotube--amino acid interactions in aqueous solution with molecular dynamics simulations. Carbon 78:500–509

    Article  CAS  Google Scholar 

  19. Zaboli M, Raissi H (2016) The influence of nicotine on pioglitazone encapsulation into carbon nanotube: the investigation of molecular dynamic and density functional theory. J Biomol Struct Dyn 1102:1–15. doi:10.1080/07391102.2016.1152565

    Google Scholar 

  20. Zoete V, Cuendet MA, Grosdidier A, Michielin O (2011) SwissParam: a fast force field generation tool for small organic molecules. J Comput Chem 32:2359–2368

    Article  CAS  Google Scholar 

  21. Jorgensen WL, Chandrasekhar J, Madura JD, et al. (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  22. Kirkwood JG (1935) Statistical mechanics of fluid mixtures. J Chem Phys 3:300–313

    Article  CAS  Google Scholar 

  23. Hess B, Kutzner C, Van Der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4:435–447

    Article  CAS  Google Scholar 

  24. Berendsen HJC, JPM P, van Gunsteren WF, et al. (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690

    Article  CAS  Google Scholar 

  25. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38

    Article  CAS  Google Scholar 

  26. Izadyar A, Farhadian N, Chenarani N (2016) Molecular dynamics simulation of doxorubicin adsorption on a bundle of functionalized CNT. J Biomol Struct Dyn 34:1797–1805

    Article  CAS  Google Scholar 

  27. Toosy NKA, Raissi H, Zaboli M (2016) Theoretical calculations of intramolecular hydrogen bond of the 2-amino-2, 4, 6-cycloheptatrien-1-one in the gas phase and solution: substituent effects and their positions. J Theor Comput Chem 15:1650063

    Article  Google Scholar 

  28. Khoshbin Z, Raissi H, Zaboli M (2015) The DFT and MP2 based computational scrutiny on blue-shifted H--F stretching vibrational frequencies in hydrogen-fluoride complexes with nitriles: Insights into the decisive role of intermolecular hydrogen bonding (IMHB) in ground and electronic excited states. Arab J Chem doi:10.1016/j.arabjc.2015.06.003

  29. Small PA (1953) Some factors affecting the solubility of polymers. J Appl Chem 3:71–80

    Article  CAS  Google Scholar 

  30. Faujan NH, Karjiban RA, Kashaban I, et al. (2015) Computational simulation of palm kernel oil-based esters nano-emulsions aggregation as a potential parenteral drug delivery system. Arab J Chem doi:10.1016/j.arabjc.2015.03.003

  31. Lee B, Richards FM (1971) The interpretation of protein structures: estimation of static accessibility. J Mol Biol 55:379–400

    Article  CAS  Google Scholar 

  32. Ausaf Ali S, Hassan I, Islam A, Ahmad FA (2014) Review of methods available to estimate solvent-accessible surface areas of soluble proteins in the folded and unfolded states. Curr Protein Pept Sci 15:456–476

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Hashemzadeh.

Electronic supplementary material

ESM 1

(DOCX 731 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashemzadeh, H., Raissi, H. The functionalization of carbon nanotubes to enhance the efficacy of the anticancer drug paclitaxel: a molecular dynamics simulation study. J Mol Model 23, 222 (2017). https://doi.org/10.1007/s00894-017-3391-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-017-3391-z

Keywords

Navigation