Skip to main content
Log in

Large-scale molecular dynamics modeling of boron-doped amorphous SiCO ceramics

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

At high temperature, silicon oxycarbide (SiCO) exhibits excellent mechanical properties and thermal stability. The incorporation of boron in SiCO results in improved performance in creep temperatures. In this work, large-scale molecular dynamics calculations were applied to obtain amorphous SiCO structures containing boron. Phase separation of C–C, B–C and Si–O was achieved for three compositions, and silicon-centered mixed-bond tetrahedrons were reproduced successfully. As the boron content increases, the boron atoms tend to form B–C and B–Si bonds in the voids, which stretches the free carbon network in some instances, causing a increase in C–C distance. Young’s modulus remains stable at high temperature for the high-carbon case, which indicates that the free carbon network plays a critical role in the structural and thermal stability of SiBCO.

Three major typical structures in the cooling down process for silicon boron oxycarbide (Si5BC2O8). Bonds: red Si–O, blue Si–C, black C–C, green B–C, purple Si–B

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3a–c
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Colombo P, Mera G, Riedel R, Sorarù GD (2010) Polymer-derived ceramics: 40 years of research and innovation in advanced ceramics. J Am Ceram Soc 93:1805–1837

    CAS  Google Scholar 

  2. Klonczynski A, Schneider G, Riedel R, Theissmann R (2004) Influence of boron on the microstructure of polymer derived SiCO ceramics. Adv Eng Mater 6:64–68

    Article  CAS  Google Scholar 

  3. Liebau V, Hauser R, Riedel R (2004) Amorphous SiBCO ceramics derived from novel polymeric precursors. Cr Chim 7:463–469

    Article  CAS  Google Scholar 

  4. Saha A, Raj R, Williamson DL (2006) A model for the nanodomains in polymer-derived SiCO. J Am Ceram Soc 89:2188–2195

    CAS  Google Scholar 

  5. Tamayo A, Peña-Alonso R, Rubio F, Rubio J, Oteo J (2012) Synthesis and characterization of boron silicon oxycarbide glass fibers. J Non-Cryst Solids 358:155–162

    Article  CAS  Google Scholar 

  6. Kousaalya AB, Kumar R, Packirisamy S (2013) Characterization of free carbon in the as-thermolyzed Si-BCN ceramic from a polyorganoborosilazane precursor. J Aav Ceram 2:325–332

    Article  CAS  Google Scholar 

  7. Pena-Alonso R, Mariotto G, Gervais C, Babonneau F, Soraru GD (2007) New insights on the high-temperature nanostructure evolution of SiOC and B-doped SiBOC polymer-derived glasses. Chem Mater 19:5694–5702

    Article  CAS  Google Scholar 

  8. Laidani NB, Sorarù GD (2015) N-doped polymer-derived Si (N) OC: the role of the N-containing precursor. J Mater Res 30:770–781

    Article  Google Scholar 

  9. Tavakoli AH, Campostrini R, Gervais C, Babonneau F, Bill J, Soraru GD, Navrotsky A (2014) Energetics and structure of polymer-derived Si-(B-) O–C glasses: effect of the boron content and pyrolysis temperature. J Am Ceram Soc 97:303–309

    Article  CAS  Google Scholar 

  10. Liao N, Xue W, Zhang M (2011) Molecular dynamics investigation of temperature dependent structural and fracture properties of amorphous silicon nitride. Mater Sci Technol 27:1798–1801

    Article  CAS  Google Scholar 

  11. Matsunaga K, Iwamoto Y (2001) Molecular dynamics study of atomic structure and diffusion behavior in amorphous silicon nitride containing boron. J Am Ceram Soc 84:2213–2219

    Article  CAS  Google Scholar 

  12. Liao N, Xue W, Zhang M (2012) Effect of carbon content on structural and mechanical properties of SiCN by atomistic simulations. J Eur Ceram Soc 32:1275–1281

    Article  CAS  Google Scholar 

  13. Tomar V, Gan M, Kim HS (2010) Atomistic analyses of the effect of temperature and morphology on mechanical strength of Si–C–N and Si–C–O nanocomposites. J Eur Ceram Soc 30:2223–2237

    Article  CAS  Google Scholar 

  14. Azamat J, Khataee A, Joo SW (2014) Separation of a heavy metal from water through a membrane containing boron nitride nanotubes: molecular dynamics simulations. J Mol Model 20:1–9

    Article  CAS  Google Scholar 

  15. Ansari R, Mirnezhad M, Hosseinzadeh M (2015) Mechanical properties of chiral and achiral silicon carbide nanotubes under oxygen chemisorption. J Mol Model 21:1–7

    Article  Google Scholar 

  16. Liao N, Ma G, Zhang M, Xue W (2012) Effects of SiC particles on mechanical properties of SiCN-based composite by atomistic simulation. Composites Part B 43:1739–1742

    Article  CAS  Google Scholar 

  17. Tersoff J (1989) Modeling solid-state chemistry: interatomic potentials for multicomponent systems. Phys Rev B 39:5566

    Article  CAS  Google Scholar 

  18. Munetoh S, Motooka T, Moriguchi K, Shintani A (2007) Interatomic potential for Si–O systems using Tersoff parameterization. Comput Mater Sci 39:334–339

    Article  CAS  Google Scholar 

  19. Swope WC, Andersen HC, Berens PH, Wilson K (1982) A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: application to small water clusters. J Chem Phys 76:637–649

    Article  CAS  Google Scholar 

  20. Hoover WG (1985) Canonical dynamics: equilibrium phase-space distributions. Phys Rev A 31:1695

    Article  CAS  Google Scholar 

  21. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19

    Article  CAS  Google Scholar 

  22. Schiavon MA, Armelin NA, Yoshida IVP (2008) Novel poly (borosiloxane) precursors to amorphous SiBCO ceramics. Mater Chem Phys 112:1047–1054

    Article  CAS  Google Scholar 

  23. Bai H, Wen G, Huang X, Han Z, Zhong B, Hu Z, Zhang X (2011) Synthesis and structural characterization of SiBOC ceramic fibers derived from single-source polyborosiloxane. J Eur Ceram Soc 31:931–940

    Article  CAS  Google Scholar 

  24. Bréquel H, Parmentier J, Walter S, Badheka R, Trimmel G, Masse S, Latournerie J, Dempsey P, Turquat C, Desmartin-Chomel A (2004) Systematic structural characterization of the high-temperature behavior of nearly stoichiometric silicon oxycarbide glasses. Chem Mater 16:2585–2598

    Article  Google Scholar 

  25. Moysan C, Riedel R, Harshe R, Rouxel T, Augereau F (2007) Mechanical characterization of a polysiloxane-derived SiOC glass. J Eur Ceram Soc 27:397–403

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the support of the National Natural Science Foundation of China (51675384), Public Welfare Science and Technology Project of Wenzhou City (G20160005), and the High Performance Computing System of Wenzhou University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ningbo Liao or Ping Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Liao, N., Xue, W. et al. Large-scale molecular dynamics modeling of boron-doped amorphous SiCO ceramics. J Mol Model 23, 178 (2017). https://doi.org/10.1007/s00894-017-3354-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-017-3354-4

Keywords

Navigation