Skip to main content
Log in

The DFT local reactivity descriptors of α-tocopherol

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The calculations of local reactivity descriptors, the electron donor Fukui function f ˉ(r), the average local ionization energy Ī(r), the Fukui function dual descriptor f (2)(r), and the electron acceptor Fukui function f +(r) for α-tocopherol, the main biologically active form of vitamin E for antioxidant reactions in phospholipid membranes, is presented. The calculations are performed at B3LYP/6-311++G** level of theory in the gas-phase. The obtained results indicate that the most preferred sites for donating electron in a reaction with radical or oxidizing molecule are associated mostly with π electrons above and below the aromatic part of the α-tocopherol chromanol ring. The most reactive sites for accepting electrons are associated with the leaving H(9) atom in the extension of the phenolic OH bond on the α-tocopherol chromanol ring plane, in the place where the formation of H-bond of the precursor complex between approaching reactive oxygen radical and phenolic OH group of α-tocopherol could be expected. The separated reactive sites in α-tocopherol suggest that the proton and electron, along with the hydrogen atom transfer (HAT) process, could also be transferred to different proton and electron acceptors as in bidirectional proton coupled electron transfer (PCET) reactions. The results presented in this paper suggest that large charge redistribution and significant π-π interactions may be expected in antioxidant reactions of α-tocopherol.

The DFT local reactivity descriptors reveal electron donor (blue) and acceptor (red) reactive sites and can be used in research of the initial stage of α-tocopherol antioxidant reactions

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Burton GW, Ingold KU (1986) Vitamin E: application of the principles of physical organic chemistry to the exploration of its structure and function. Acc Chem Res 19:194–201. doi:10.1021/ar00127a001

    Article  CAS  Google Scholar 

  2. Mustacich DJ, Bruno RS, Traber MG (2007) Vitamin E. In: Litwack G (ed) Vitamin E: vitamins and hormones. Elsevier, San Diego, pp 1–21. doi:10.1016/S0083-6729(07)76001-6

  3. Niki E (2014) Role of vitamin E as a lipid-soluble peroxyl radical scavenger: in vitro and in vivo evidence. Free Radic Biol Med 66:3–12. doi:10.1016/j.freeradbiomed.2013.03.022

    Article  CAS  Google Scholar 

  4. Traber MG, Stevens JF (2011) Vitamins C and E: beneficial effects from a mechanistic perspective. Free Radic Biol Med 51:1000–1013. doi:10.1016/j.freeradbiomed.2011.05.017

    Article  CAS  Google Scholar 

  5. Azzi A (2007) Molecular mechanism of α-tocopherol action. Free Radic Biol Med 43:16–21. doi:10.1016/j.freeradbiomed.2007.03.013

    Article  CAS  Google Scholar 

  6. Jiang Q (2014) Natural forms of vitamin E: metabolism, antioxidant, and anti-inflammatory activities and their role in disease prevention and therapy. Free Radic Biol Med 72:76–90. doi:10.1016/j.freeradbiomed.2014.03.035

    Article  CAS  Google Scholar 

  7. Boscoboinik D, Szewczyk A, Hensey C, Azzi A (1991) Inhibition of cell-proliferation by alpha-tocopherol - role of protein-kinase-C. J Biol Chem 266:6188–6194

    CAS  Google Scholar 

  8. Chojkier M, Houglum K, Lee KS, Buck M (1998) Long- and short-term D-alpha-tocopherol supplementation inhibits liver collagen alpha1(I) gene expression. Am J Physiol 275:G1480–1485

    CAS  Google Scholar 

  9. Aratri E, Spycher SE, Breyer I, Azzi A (1999) Modulation of alpha-tropomyosin expression by alpha-tocopherol in rat vascular smooth muscle cells. FEBS Lett 447:91–94. doi:10.1016/S0014-5793(99)00277-X

    Article  CAS  Google Scholar 

  10. Burton GW, Doba T, Gabe E, Hughes L, Lee FL, Prasad L, Ingold KU (1985) Autoxidation of biological molecules. 4. Maximizing the antioxidant activity of phenols. J Am Chem Soc 107:7053–7065. doi:10.1021/ja00310a049

  11. Burton GW, Ingold KU (1981) Autoxidation of biological molecules. 1. Antioxidant activity of vitamin E and related chain-breaking phenolic antioxidants in vitro. J Am Chem Soc 103:6472–6477. doi:10.1021/ja00411a035

    Article  CAS  Google Scholar 

  12. Marquardt D, Williams JA, Kučerka N, Atkinson J, Wassall SR, Katsaras J, Harroun TA (2013) Tocopherol activity correlates with its location in a membrane: a new perspective on the antioxidant vitamin E. J Am Chem Soc 135:7523–7533. doi:10.1021/ja312665r

    Article  CAS  Google Scholar 

  13. Yoshida Y, Niki E, Noguchi N (2003) Comparative study on the action of tocopherols and tocotrienols as antioxidant: chemical and physical effects. Chem Phys Lipids 123:63–75. doi:10.1016/S0009-3084(02)00164-0

    Article  CAS  Google Scholar 

  14. Nagaoka S, Inoue M, Nishioka C, Nishioku Y, Tsunoda S, Ohguchi C, Ohara K, Mukai K, Nagashima U (2000) Tunneling effect in antioxidant, prooxidant, and regeneration reactions of vitamin E. J Phys Chem B 104:856–862. doi:10.1021/jp9932113

    Article  CAS  Google Scholar 

  15. Nagaoka S, Kuranaka A, Tsuboi H, Nagashima U, Mukai K (1992) Mechanism of antioxidant reaction of vitamin E: charge transfer and tunneling effect in proton-transfer reaction. J Phys Chem 96:2754–2761. doi:10.1021/j100185a065

    Article  CAS  Google Scholar 

  16. Wright JS, Carpenter DJ, McKay DJ, Ingold KU (1997) Theoretical calculation of substituent effects on the O−H bond strength of phenolic antioxidants related to vitamin E. J Am Chem Soc 119:4245–4252. doi:10.1021/ja963378z

  17. Rosenau T, Ebner G, Stanger A, Perl S, Nuri L (2005) From a theoretical concept to biochemical reactions: strain-induced bond localization (SIBL) in oxidation of vitamin E. Chem Eur J 11:280–287. doi:10.1002/chem.200400265

    Article  Google Scholar 

  18. Inagaki T, Yamamoto T (2014) Critical role of deep hydrogen tunneling to accelerate the antioxidant reaction of ubiquinol and vitamin E. J Phys Chem B 118:937–950. doi:10.1021/jp410263f

    Article  CAS  Google Scholar 

  19. Navarrete M, Rangel C, Corchado JC, Espinosa-Garcia J (2005) Trapping of the OH radical by α-tocopherol: a theoretical study. J Phys Chem A 109:4777–4784. doi:10.1021/jp050717e

    Article  CAS  Google Scholar 

  20. Navarrete M, Rangel C, Espinosa-García J, Corchado JC (2005) Theoretical study of the antioxidant activity of vitamin E: reactions of α-tocopherol with the hydroperoxy radical. J Chem Theory Comput 1:337–344. doi:10.1021/ct0498932

  21. Gutiérrez-Oliva S (2011) Theoretical study of the hydrogen abstraction from vitamin-E analogues. The usefulness of DFT descriptors. J Mol Model 17:593–598. doi:10.1007/s00894-010-0759-8

    Article  Google Scholar 

  22. Zhang H-Y, Ji H-F (2006) How vitamin E scavenges DPPH radicals in polar protic media. New J Chem 30:503–504. doi:10.1039/B600025H

    Article  CAS  Google Scholar 

  23. Musialik M, Litwinienko G (2005) Scavenging of dpph • radicals by vitamin E Is accelerated by Its partial ionization: the role of sequential proton loss electron transfer. Org Lett 7:4951–4954. doi:10.1021/ol051962j

    Article  CAS  Google Scholar 

  24. Klein E, Lukeš V, Ilčin M (2007) DFT/B3LYP study of tocopherols and chromans antioxidant action energetics. Chem Phys 336:51–57. doi:10.1016/j.chemphys.2007.05.007

    Article  CAS  Google Scholar 

  25. Martínez A, Rodríguez-Gironés MA, Barbosa A, Costas M (2008) Donator acceptor map for carotenoids, melatonin and vitamins. J Phys Chem A 112:9037–9042. doi:10.1021/jp803218e

    Article  Google Scholar 

  26. Singh NK, O’Malley PJ, Popelier PLA (2007) Electronic structure calculations of vitamin E analogues: a model for calculated geometries, hyperfine coupling constants, reaction enthalpies (ΔHr) and relative bond dissociation enthalpies (ΔBDE). J Mol Struct (THEOCHEM) 811:249–254. doi:10.1016/j.theochem.2007.01.034

    Article  CAS  Google Scholar 

  27. Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Oxford University Press, Oxford

    Google Scholar 

  28. Parr RG, Yang W (1995) Density-functional theory of the electronic-structure of molecules. Annu Rev Phys Chem 46:701–728. doi:10.1146/annurev.pc.46.100195.003413

    Article  CAS  Google Scholar 

  29. Chattaraj PK (2009) Chemical reactivity theory: a density functional view. CRC, Boca Raton

    Book  Google Scholar 

  30. Geerlings P, Fias S, Boisdenghien Z, De Proft F (2014) Conceptual DFT: chemistry from the linear response function. Chem Soc Rev 43:4989–5008. doi:10.1039/c3cs60456j

    Article  CAS  Google Scholar 

  31. Parr RG, Yang W (1984) Density functional approach to the frontier-electron theory of chemical reactivity. J Am Chem Soc 106:4049–4050. doi:10.1021/ja00326a036

    Article  CAS  Google Scholar 

  32. Ayers PW, Yang W, Bartolotti LJ (2009) Fukui function. In: Chattaraj PK (ed) Chemical reactivity theory. A density functional view. CRC, New York, pp 255–267

    Google Scholar 

  33. Morell C, Grand A, Gutiérrez-Oliva S, Toro-Labbé A (2007) Using the reactivity-selectivity descriptor Δf(r) in organic chemistry. In: Toro-Labbé A (Ed.) Theoretical aspects of chemical reactivity. Elsevier, Dordrecht, pp 101–117

  34. Fuentealba P, Florez E, Tiznado W (2010) Topological analysis of the fukui function. J Chem Theory Comput 6:1470–1478. doi:10.1021/ct100022w

    Article  CAS  Google Scholar 

  35. Pilepić V, Uršić S (2001) Nucleophilic reactivity of the nitroso group. Fukui function DFT calculations for nitrosobenzene and 2-methyl-2-nitrosopropane. J Mol Struct (THEOCHEM) 538:41–49. doi:10.1016/S0166-1280(00)00642-4

    Article  Google Scholar 

  36. Brala Jakobušić C, Fabijanić I, Marković AK, Pilepić V (2014) The average local ionization energy and Fukui function of L-ascorbate, the local reactivity descriptors of antioxidant reactivity. Comput Theor Chem 1049:1–6. doi:10.1016/j.comptc.2014.09.008

    Article  Google Scholar 

  37. Cardenas C, Rabi N, Ayers PW et al (2009) Chemical reactivity descriptors for ambiphilic reagents: dual descriptor, local hypersoftness, and electrostatic potential. J Phys Chem A 113:8660–8667. doi:10.1021/jp902792n

    Article  CAS  Google Scholar 

  38. Politzer P, Murray JS, Bulat FA (2010) Average local ionization energy: a review. J Mol Model 16:1731–1742. doi:10.1007/s00894-010-0709-5

    Article  CAS  Google Scholar 

  39. Politzer P, Murray JS (2007) The Average Local Ionization Energy: Concepts and Applications. In: Toro-Labbé A (Ed.) Theoretical aspects of chemical reactivity. Elsevier, Dordrecht, pp 119–137

  40. Murray JS, Shields ZP-I, Lane P et al (2013) The average local ionization energy as a tool for identifying reactive sites on defect-containing model graphene systems. J Mol Model 19:2825–2833. doi:10.1007/s00894-012-1693-8

    Article  CAS  Google Scholar 

  41. Stephens PJ, Devlin FL, Chabalowski CF, Frisch MJ (1994) Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem 98:11623–11627. doi:10.1021/j100096a001

    Article  CAS  Google Scholar 

  42. Hehre WJ, Radom L, Schleyer P, Pople JA (1987) Ab initio molecular orbital theory. Wiley, New York

    Google Scholar 

  43. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam MJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision D.01. Gaussian Inc, Wallingford

    Google Scholar 

  44. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592. doi:10.1002/jcc.22885, Version 3.3.5

    Article  Google Scholar 

  45. Dennington R, Keith T, Millam J (2006) GaussView, version 4.1.2. Semichem Inc, Shawnee

    Google Scholar 

  46. Qin SS, Yu ZW, Yu Y-X (2009) Structural and kinetic properties of α-tocopherol in phospholipid bilayers, a molecular dynamics simulation study. J Phys Chem B 113:16537–16546. doi:10.1021/jp9074306

    Article  CAS  Google Scholar 

  47. Toro-Labbé A, Jaque P, Murray JS, Politzer P (2005) Connection between the average local ionization energy and the Fukui function. Chem Phys Lett 407:143–146. doi:10.1016/j.cplett.2005.03.041

    Article  Google Scholar 

  48. Sirjoosingh A, Hammes-Schiffer S (2011) Proton-coupled electron transfer versus hydrogen atom transfer: generation of charge-localized diabatic states. J Phys Chem A 115:2367–2377. doi:10.1021/jp111210c

    Article  CAS  Google Scholar 

  49. Mayer JM (2004) Proton-coupled electron transfer: A reaction chemist’s view. Annu Rev Phys Chem 55:363–390. doi:10.1146/annurev.physchem.55.091602.094446

    Article  CAS  Google Scholar 

  50. Mayer JM, Hrovat DA, Thomas JL, Borden WT (2002) Proton-coupled electron transfer versus hydrogen atom transfer in benzyl/toluene, methoxyl/methanol, and phenoxyl/phenol self-exchange reactions. J Am Chem Soc 124:11142–11147. doi:10.1021/ja012732c

    Article  CAS  Google Scholar 

  51. DiLabio GA, Johnson ER (2007) Lone pair-π and π-π interactions play an important role in proton-coupled electron transfer reactions. J Am Chem Soc 129:6199–6203. doi:10.1021/ja068090g

    Article  CAS  Google Scholar 

  52. Kaila VRI, Hummer G (2011) Energetics of direct and water-mediated proton-coupled electron transfer. J Am Chem Soc 133:19040–19043. doi:10.1021/ja2082262

    Article  CAS  Google Scholar 

  53. Tishchenko O, Truhlar DG, Ceulemans A, Nguyen MT (2008) A unified perspective on the hydrogen atom transfer and proton-coupled electron transfer mechanisms in terms of topographic features of the ground and excited potential energy surfaces as exemplified by the reaction between phenol and radicals. J Am Chem Soc 130:7000–7010. doi:10.1021/ja7102907

    Article  CAS  Google Scholar 

  54. Zhong A, Ge C, Liang H, Jiang H, Zhou Q (2012) Proton–coupled electron transfer versus hydrogen atom transfer: a density functional reactivity theory characterization. Comput Theor Chem 988:13–18. doi:10.1016/j.comptc.2012.02.020

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the University of Zagreb Computing Centre (SRCE) for providing the computing facilities and Croatian Ministry of Science, Education and Sports for support (Project: 006-3082-0354). We also thank the referee for the suggestion to include frontier molecular orbitals in the consideration.

Compliance with ethical standards

Funding

This study was funded by Croatian Ministry of Science, Education and Sports (grant number 006-3082-0354).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viktor Pilepić.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fabijanić, I., Jakobušić Brala, C. & Pilepić, V. The DFT local reactivity descriptors of α-tocopherol. J Mol Model 21, 99 (2015). https://doi.org/10.1007/s00894-015-2644-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-015-2644-y

Keywords

Navigation