Skip to main content
Log in

Polarizability of neutral copper clusters

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Neutral copper clusters are characterized through their molecular structures, binding energy and electric dipole polarizability. It is shown that the mean and anisotropy of polarizability tensor are useful properties in the characterization and rationalization of reactivity and growth patterns in copper clusters. We also found a relationship between softness per atom and cubic root polarizability per atom which can be useful to get global softness in copper clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Morse MD (1986) Chem Rev 86:1049

    Article  CAS  Google Scholar 

  2. Spasov VA, Lee T-H, Ervin KM (2000) J Chem Phys 112:1713

    Article  CAS  Google Scholar 

  3. Ingólfsson O, Busolt U, Sugawara K (2000) J Chem Phys 112:4613

    Article  Google Scholar 

  4. Moore CE (1971) Atomic Energy Levels Vol. II of Nat Bur Standars

  5. James AM, Lemire GW, Langridge-Smith PR (1994) Chem Phys Lett 277:503

    Article  Google Scholar 

  6. Knickelbein MB (1992) Chem Phys Lett 192:129

    Article  CAS  Google Scholar 

  7. Powers DE, Hansen SG, Geusic ME, Michalopoulos DL, Smalley RE (1983) J Chem Phys 78:2866

    Article  CAS  Google Scholar 

  8. Winter BJ, Parks EK, Riley SJ (1991) J Chem Phys 92:8618

    Article  Google Scholar 

  9. Ho J, Ervin KM, Lineberger WC (1990) J Chem Phys 93:6987

    Article  CAS  Google Scholar 

  10. Balbuena P, Derosa P, Seminario JM (1999) J Phys Chem B 103:2830

    Article  CAS  Google Scholar 

  11. Jug K, Zimmermann B, Calaminici P, Koster AM (2002) J Chem Phys 116:4497

    Article  CAS  Google Scholar 

  12. Calaminici P, Koster AM, Vela A (2000) J Chem Phys 113:2199

    Article  CAS  Google Scholar 

  13. Jackson KA (1993) Phys Rev B 47:9715

    Article  CAS  Google Scholar 

  14. Chandrakumar KRS, Ghanty TK, Ghosh SK (2004) J Phys Chem A 108:6661

    Article  CAS  Google Scholar 

  15. Jaque P, Toro-Labbé A (2002) J Chem Phys 117:3208

    Article  CAS  Google Scholar 

  16. Jaque P, Toro-Labbé A (2004) J Phys Chem B 108:2568

    Article  CAS  Google Scholar 

  17. Poater A, Duran M, Jaque P, Toro-Labbé A, Solà M (2006) J Phys Chem B 110:6526

    Article  CAS  Google Scholar 

  18. Grigoryan VG, Alamanova D, Springborg M (2006) Phys Rev B 73:115415

    Article  Google Scholar 

  19. Chu X, Xiang M, Zeng Q, Zhu W, Yang M (2011) J Phys B: At Mol Opt Phys 44:205103

    Article  Google Scholar 

  20. Lecoultre S, Rydlo A, Fulix C, Buttet J, Gilb S, Harbich W (2011) J Chem Phys 134:074303

    Article  CAS  Google Scholar 

  21. Chu X, Yang M, Jackson KA (2011) J Chem Phys 134:234505

    Article  Google Scholar 

  22. Parka YH, Hijazib IA (2012) Mol Simul 38:241

    Article  Google Scholar 

  23. Brack M (1993) Rev Mod Phys 65:677

    Article  CAS  Google Scholar 

  24. De Heer W (1993) Rev Mod Phys 65:611

    Article  CAS  Google Scholar 

  25. Bonin KD, Kresin VV

  26. Knickelbein MB (2004) J Chem Phys 120:10450

    Article  CAS  Google Scholar 

  27. Yang M, Jackson KA (2005) vol 122, pp 184317–1

  28. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  29. Perdew JP, Wang WR (1992) Phys Rev B 45:13244

    Article  Google Scholar 

  30. Hay PJ, Wadt WR (1985) J Chem Phys 82:270

    Article  CAS  Google Scholar 

  31. Peng C, Ayala PY, Schlegel HB, Frisch MJ (1996) J Comput Chem 17:49

    Article  CAS  Google Scholar 

  32. Gonzalez C, Schlegel HB (1989) J Chem Phys 90:2154

    Article  CAS  Google Scholar 

  33. Gonzalez C, Schlegel HB (1990) J Phys Chem 94:5523

    Article  CAS  Google Scholar 

  34. Frisch JM, Trucks GW, Schlegel HB, et al (2003) Gaussian03. Revision C.02. Gaussian Inc. Pittsburgh, PA

  35. Sadlej AJ (1988) Collect Czech Chem Commun 53:1995

    Article  CAS  Google Scholar 

  36. Jaque P, Toro-Labbé A, Politzer P, Geerlings P (2008) Chem Phys Lett 456:135

    Article  CAS  Google Scholar 

  37. Kittel C (1971) Introduction to Solid–State Physics. Wiley, New York, 4th edition

  38. Pou-Amérigo R, Merchán M, Nebot-Gil I, Widmark PO, Ross BO (1995) Theor Chem Acc 92:149

    Article  Google Scholar 

  39. Neogrady P, Killo V, Urban M, Sadlej AJ (1997) Int J Quantum Chem 63:557

    Article  CAS  Google Scholar 

  40. Bishop DM, Kirtman B (1991) J Chem Phys 95:2646

    Article  CAS  Google Scholar 

  41. Bishop DM, Kirtman B (1992) J Chem Phys 97:5255

    Article  CAS  Google Scholar 

  42. Hirschfelder JO, Curtiss CF, Bird RB (1954) Molecular Theory of Gases and Liquids, page 966. Wiley, New York

    Google Scholar 

  43. Glasstone S (1940) Textbook of Physical Chemistry. van Nostrand, New York

    Google Scholar 

  44. Politzer P, Jin P, Murray JS (2002). J Chem Phys 117:8197

    Article  CAS  Google Scholar 

  45. Millefiori S, Alparone A (2001). J Phys Chem A 105:9489

    Article  CAS  Google Scholar 

  46. Aray Y, Rodriguez J, Vega D (2000) J Phys Chem B 104:4608

    Article  CAS  Google Scholar 

  47. Parr RG, Yang W (1989) Density Functional Theory of Atoms and Molecules. Oxford University Press, New York

    Google Scholar 

  48. Parr RG, Pearson RG (1983) J Am Chem Soc 105:7512

    Article  CAS  Google Scholar 

  49. Politzer P (1987) J Chem Phys 86:1072

    Article  CAS  Google Scholar 

  50. Sen KD, Bohm MC, Schmidt PC (1987) Struct Bonding (Berlin) 66:99

    Article  CAS  Google Scholar 

  51. Vela A, Gázquez JL (1990) J Am Chem Soc 112:1490

    Article  CAS  Google Scholar 

  52. Fuentealba P, Reyes O (1993) J Mol Struct THEOCHEM 282:65

    Article  Google Scholar 

  53. Ghanty TK, Ghosh SK (1993) J Phys Chem 97:4951

    Article  CAS  Google Scholar 

  54. Simón-Manso Y, Fuentealba P (1998) J Phys Chem A 102:2029

    Article  Google Scholar 

  55. Politzer P, Murray JS, Concha Monica C, Jin P (2007) Collect Czech Chem Commun 1:51

    Article  Google Scholar 

  56. Yang W, Lee C, Ghosh SK (1985) J Phys Chem 89:5412

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support to FONDECYT through project numbers 1100291 and 1130072, and Millenium Nucleus CPC grant NC120082.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Jaque.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaque, P., Toro–Labbé, A. Polarizability of neutral copper clusters. J Mol Model 20, 2410 (2014). https://doi.org/10.1007/s00894-014-2410-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2410-6

Keywords

Navigation