Skip to main content
Log in

Theoretical investigation on the crystal structures and electron transport properties of several nitrogen-rich pentacene derivatives

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Exploring and synthesizing new simple n-channel organic semiconductor materials with large electron mobility and high air stability have remained a major challenge and hot issue in the field of organic electronics. In the current work, the electron transport properties of four novel nitrogen-rich pentacene derivatives (PBD1, PBD2, PBD3, and PBD4) with two cyano groups as potential n-channel OFET materials have been investigated at the molecular and crystal levels by means of density functional theory (DFT) calculations coupled with the prediction of crystal structures and the incoherent charge-hopping model. Calculations reveal that the studied compounds, which possess low-lying frontier molecular energy levels, large ionization potentials and electron affinities, are very stable exposed to air. Based on predicted crystal structures, the average electron mobility at room temperature (T = 300 K) for PBD1, PBD2, PBD3, and PBD4 is predicted to be as high as 0.950, 0.558, 0.518, and 1.052 cm2·V−1·s−1, which indicate that these four compounds are more than likely to be promising candidates as n-type OFET materials under favorable device conditions. However, this claim needs experimental verification. In addition, the angular-dependent simulation for electron mobility shows that the electron transport is remarkably anisotropic in these molecular crystals and the maximum μ e appears along the crystal axis direction since molecules along this direction exhibit the close face-to-face stacking arrangement with short interplanar distances (~3.6-4.0 Å), which induces large electronic couplings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wang CL, Dong HL, Hu WP, Liu YQ, Zhu DB (2012) Chem Rev 112:2208–2267

    Article  CAS  Google Scholar 

  2. Menard E, Meitl MA, Sun YG, Park J-U, Shir DJ-L, Nam Y-S, Jeon S, Rogers JA (2007) Chem Rev 107:1117–1160

    Article  CAS  Google Scholar 

  3. Cheng Y-J, Yang S-H, Hsu C-S (2009) Chem Rev 109:5868–5923

    Article  CAS  Google Scholar 

  4. Jurchescu OD, Baas J, Palstra TTM (2004) Appl Phys Lett 84:3061–3063

    Article  CAS  Google Scholar 

  5. Podzorov V, Menard E, Borissov A, Kiryukhin V, Rogers JA, Gershenson ME (2004) Phys Rev Lett 93:086602

    Article  CAS  Google Scholar 

  6. Zhao Y, Di C-A, Gao XK, Hu YB, Guo YL, Zhang L, Liu YQ, Wang JZ, Hu WP, Zhu DB (2011) Adv Mater 23:2448–2453

    Article  CAS  Google Scholar 

  7. Street RA (2009) Adv Mater 21:2007–2022

    Article  CAS  Google Scholar 

  8. Kuo M-Y, Chen H-Y, Chao I (2007) Chem Eur J 13:4750–4758

    Article  CAS  Google Scholar 

  9. Liu C-C, Mao S-W, Kuo M-Y (2010) J Phys Chem C 114:22316–22321

    Article  CAS  Google Scholar 

  10. Sun H, Putta A, Billion M (2012) J Phys Chem A 116:8015–8022

    Article  CAS  Google Scholar 

  11. Chai S, Wen S-H, Huang J-D, Han K-L (2011) J Comput Chem 32:3218–3225

    Article  CAS  Google Scholar 

  12. Hutchison GR, Ratner MA, Marks TJ (2005) J Am Chem Soc 127:2339–2350

    Article  CAS  Google Scholar 

  13. Chen X-K, Guo J-F, Zou L-Y, Ren A-M (2011) J Phys Chem C 115:21416–21428

    Article  CAS  Google Scholar 

  14. Gao BX, Wang M, Cheng YX, Wang LX, Jing XB, Wang FS (2008) J Am Chem Soc 130:8297–8306

    Article  CAS  Google Scholar 

  15. Wang HF, Wen YG, Yang XD, Wang Y, Zhou WY, Zhang SM, Zhan XW, Liu YQ, Shuai ZG, Zhu DB (2009) ACS Appl Mater Interf 1:1122–1129

    Article  CAS  Google Scholar 

  16. Winkler M, Houk KN (2007) J Am Chem Soc 129:1805–1815

    Article  CAS  Google Scholar 

  17. Hanwell MD, Madison TA, Hutchison GR (2010) J Phys Chem C 114:20417–20423

    Article  CAS  Google Scholar 

  18. Marcus RA (1956) J Chem Phys 24:966–978

    Article  CAS  Google Scholar 

  19. Hush NS (1958) J Chem Phys 28:962–972

    Article  CAS  Google Scholar 

  20. Malagoli M, Brédas JL (2000) Chem Phys Lett 327:13–17

    Article  CAS  Google Scholar 

  21. Lemaur V, da Silva Filho DA, Coropceanu V, Lehmann M, Geerts Y, Piris J, Debije MG, van de Craats AM, Senthilkumar K, Siebbeles LDA, Warman JM, Brédas J-L, Cornil J (2004) J Am Chem Soc 126:3271–3279

    Article  CAS  Google Scholar 

  22. Sanchez-Carrera RS, Coropceanu V, da Silva Filho DA, Friedlein R, Osikowicz W, Murdey R, Suess C, Salaneck WR, Brédas J-L (2006) J Phys Chem B 110:18904–18911

    Article  CAS  Google Scholar 

  23. Brédas J-L, Beljonne D, Coropceanu V, Cornil J (2004) Chem Rev 104:4971–5003

    Article  CAS  Google Scholar 

  24. Chen H-Y, Chao I (2005) Chem Phys Lett 401:539–545

    Article  CAS  Google Scholar 

  25. Barbara PF, Meyer TJ, Ratner MA (1996) J Phys Chem 100:13148–13168

    Article  CAS  Google Scholar 

  26. Troisi A, Orlandi G (2002) J Phys Chem B 106:2093–2101

    Article  CAS  Google Scholar 

  27. Newton MD (1991) Chem Rev 91:767–792

    Article  CAS  Google Scholar 

  28. Cave RJ, Newton MD (1997) J Chem Phys 106:9213–9226

    Article  CAS  Google Scholar 

  29. Valeev EF, Coropceanu V, da Silva Filho DA, Salman S, Brédas J-L (2006) J Am Chem Soc 128:9882–9886

    Article  CAS  Google Scholar 

  30. Nan GJ, Wang LJ, Yang XD, Shuai ZG, Zhao Y (2009) J Chem Phys 130:024704

    Article  CAS  Google Scholar 

  31. Wang LJ, Nan GJ, Yang XD, Peng Q, Li QK, Shuai ZG (2010) Chem Soc Rev 39:423–434

    Article  CAS  Google Scholar 

  32. Senthilkumar K, Grozema FC, Guerra CF, Bickelhaupt FM, Lewis FD, Berlin YA, Ratner MA, Siebbeles LDA (2005) J Am Chem Soc 127:14894–14903

    Article  CAS  Google Scholar 

  33. Zhang WW, Zhu WJ, Liang WZ, Zhao Y, Nelsen SF (2008) J Phys Chem B 112:11079–11086

    Article  CAS  Google Scholar 

  34. Lowdin P-O (1950) J Chem Phys 18:365–375

    Article  CAS  Google Scholar 

  35. Gao HZ, Qin CS, Zhang HY, Wu SX, Su ZM, Wang Y (2008) J Phys Chem A 112:9097–9103

    Article  CAS  Google Scholar 

  36. Yin SW, Yi YP, Li QX, Yu G, Liu YQ, Shuai ZG (2006) J Phys Chem A 110:7138–7143

    Article  CAS  Google Scholar 

  37. Song YB, Di CA, Yang XD, Li SP, Xu W, Liu YQ, Yang LM, Shuai ZG, Zhang DQ, Zhu DB (2006) J Am Chem Soc 128:15940–15941

    Article  CAS  Google Scholar 

  38. Einstein A (1905) Ann Phys 17:549–560

    Article  CAS  Google Scholar 

  39. van Smoluchowski M (1906) Ann Phys 21:756–780

    Article  Google Scholar 

  40. Gao HZ (2010) Theor Chem Acc 127:759–763

    Article  CAS  Google Scholar 

  41. Wen S-H, Li A, Song J-L, Deng W-Q, Han K-L, Goddard WA III (2009) J Phys Chem B 113:8813–8819

    Article  CAS  Google Scholar 

  42. Huang J-D, Wen S-H, Deng W-Q, Han K-L (2011) J Phys Chem B 115:2140–2147

    Article  CAS  Google Scholar 

  43. Yin SW, Li LL, Yang YM, Reimers JR (2012) J Phys Chem C 116:14826–14836

    Article  CAS  Google Scholar 

  44. Pasveer WF, Cottaar J, Tanase C, Coehoorn R, Bobbert PA, Blom PWM, de Leeuw DM, Michels MAJ (2005) Phys Rev Lett 94:206601

    Article  CAS  Google Scholar 

  45. Chatten AJ, Tuladhar SM, Choulis SA, Bradley DDC, Nelson J (2005) J Mater Sci 40:1393–1398

    Article  CAS  Google Scholar 

  46. Yu ZG, Smith DL, Saxena A, Martin RL, Bishop AR (2001) Phys Rev B 63:085202

    Article  CAS  Google Scholar 

  47. Yin SW, Lv YF (2008) Org Electron 9:852–858

    Article  CAS  Google Scholar 

  48. Delgado MCR, Kim E-G, da Silva Filho DA, Brédas J-L (2010) J Am Chem Soc 132:3375–3387

    Article  CAS  Google Scholar 

  49. Chen X-K, Zou L-Y, Huang S, Min C-G, Ren A-M, Feng J-K, Sun C-C (2011) Org Electron 12:1198–1210

    Article  CAS  Google Scholar 

  50. Hutchison GR, Ratner MA, Marks TJ (2005) J Am Chem Soc 127:16866–16881

    Article  CAS  Google Scholar 

  51. Kera S, Hosoumi S, Sato K, Fukagawa H, Nagamatsu S, Sakamoto Y, Suzuki T, Huang H, Chen W, Wee ATS, Coropceanu V, Ueno N (2013) J Phys Chem C 117:22428–22437

    Article  CAS  Google Scholar 

  52. Gruhn NE, da Silva Filho DA, Bill TG, Malagoli M, Coropceanu V, Kahn A, Brédas J-L (2002) J Am Chem Soc 124:7918–7919

    Article  CAS  Google Scholar 

  53. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  54. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  55. Clark T, Chandrasekhar J, Spitznagel GW, Schleyer PVR (1983) J Comput Chem 4:294–301

    Article  CAS  Google Scholar 

  56. Weber P, Reimers JR (1999) J Phys Chem A 103:9830–9841

    Article  CAS  Google Scholar 

  57. Cai Z-L, Reimers JR (2000) J Phys Chem A 104:8389–8408

    Article  CAS  Google Scholar 

  58. Brovchenko IV (1997) Chem Phys Lett 278:355–359

    Article  CAS  Google Scholar 

  59. McMahon DP, Troisi A (2010) J Phys Chem Lett 1:941–946

    Article  CAS  Google Scholar 

  60. Zhan C-G, Nichols JA, Dixon DA (2003) J Phys Chem A 107:4184–4195

    Article  CAS  Google Scholar 

  61. Rienstra-Kiracofe JC, Tschumper GS, Schaefer HF, Nandi S, Ellison GB (2002) Chem Rev 102:231–282

    Article  CAS  Google Scholar 

  62. Muscat J, Wander A, Harrison NM (2001) Chem Phys Lett 342:397–401

    Article  CAS  Google Scholar 

  63. Huang JS, Kertesz M (2004) Chem Phys Lett 390:110–115

    Article  CAS  Google Scholar 

  64. Yang XD, Wang LJ, Wang CL, Long W, Shuai ZG (2008) Chem Mater 20:3205–3211

    Article  CAS  Google Scholar 

  65. Wang CL, Wang FH, Yang XD, Li QK, Shuai ZG (2008) Org Electron 9:635–640

    Article  CAS  Google Scholar 

  66. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JJA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian 09, in: Revision C.03. Gaussian Inc, Wallingford

    Google Scholar 

  67. van Eijck BP, Kroon J (1999) J Comput Chem 20:799–812

    Article  Google Scholar 

  68. Day GM, Chisholm J, Shan N, Sam Motherwell WD, Jones W (2004) Cryst Growth Des 4:1327–1340

    Article  CAS  Google Scholar 

  69. Panina N, Leusen FJJ, Janssen FFBJ, Verwer P, Meekes H, Vlieg E, Deroover G (2007) J Appl Cryst 40:105–114

    Article  CAS  Google Scholar 

  70. Gdanitz RJ (1992) Chem Phys Lett 190:391–396

    Article  CAS  Google Scholar 

  71. Chang Y-F, Lu Z-Y, An L-J, Zhang J-P (2012) J Phys Chem C 116:1195–1199

    Article  CAS  Google Scholar 

  72. Lin LL, Geng H, Shuai ZG, Luo Y (2012) Org Electron 13:2763–2772

    Article  CAS  Google Scholar 

  73. Köhler A, Khan AL, Wilson JS, Dosche C, Al-Suti MK, Shah HH, Khan MS (2012) J Chem Phys 136:094905

    Article  CAS  Google Scholar 

  74. Lee JY, Lee SJ, Kim KS (1997) J Chem Phys 107:4112–4117

    Article  CAS  Google Scholar 

  75. Kwiatkowski JJ, Nelson J, Li H, Bredas JL, Wenzel W, Lennartz C (2008) Phys Chem Chem Phys 10:1852–1858

    Article  CAS  Google Scholar 

  76. Usta H, Risko C, Wang ZM, Huang H, Deliomeroglu MK, Zhukhovitskiy A, Facchetti A, Marks TJ (2009) J Am Chem Soc 131:5586–5608

    Article  CAS  Google Scholar 

  77. Chang Y-C, Kuo M-Y, Chen C-P, Lu H-F, Chao I (2010) J Phys Chem C 114:11595–11601

    Article  CAS  Google Scholar 

  78. Newman CR, Frisbie CD, da Silva Filho DA, Brédas J-L, Ewbank PC, Mann KR (2004) Chem Mater 16:4436–4451

    Article  CAS  Google Scholar 

  79. Coropceanu V, Cornil J, da Silva Filho DA, Olivier Y, Silbey R, Brédas J-L (2007) Chem Rev 107:926–952

    Article  CAS  Google Scholar 

  80. Oehzelt M, Aichholzer A, Resel R, Heimel G, Venuti E, Della Valle RG (2006) Phys Rev B 74:104103

    Article  CAS  Google Scholar 

  81. Brédas J-L, Calbert JP, da Silva Filho DA, Cornil J (2002) Proc Natl Acad Sci U S A 99:5804–5809

    Article  CAS  Google Scholar 

  82. Usta H, Facchetti A, Marks TJ (2011) Acc Chem Res 44:501–510

    Article  CAS  Google Scholar 

  83. Usta H, Facchetti A, Marks TJ (2008) Org Lett 10:1385–1388

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Nature Science Foundation of China (21173139, 21173138), the Fundamental Research Funds for the Central Universities (GK201303004), the Shaanxi Innovative Team of Key Science and Technology (2013KCT-17), and the Innovation Funds of Graduate Programs of the Shaanxi Normal University (2013CXB023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenliang Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 368 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, C., Ge, H., Yin, S. et al. Theoretical investigation on the crystal structures and electron transport properties of several nitrogen-rich pentacene derivatives. J Mol Model 20, 2158 (2014). https://doi.org/10.1007/s00894-014-2158-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2158-z

Keywords

Navigation