Skip to main content
Log in

Electrode materials for biphenyl-based rectification devices

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

An ab initio approach was utilized to explore the electronic transport properties of 4′-thiolate-biphenyl-4-dithiocarboxylate (TBDT) sandwiched between two electrodes made of various materials X (X = Cu, Ag, and Au). Analysis of current–voltage (I–V) characteristics, rectification performance, transmission functions, and the projected density of states (PDOS) under various external voltage biases showed that the transport properties of these constructed systems are markedly impacted by the choice of electrode materials. Further, Cu electrodes yield the best rectifying behavior, followed by Ag and then Au electrodes. Interestingly, the rectification effects can be tuned by changing the torsion angle between the two phenyl rings, as well as by stretching the contact distances between the end group and the electrodes. For Cu, the maximum rectifying ratio increases by 37 % as the contact distance changes from 1.7 Å to 1.9 Å. This is due to an increase in coupling strength asymmetry between the molecule and the electrodes. Our findings are compared with the results reported for other systems. The present calculations are helpful not only for predicting the optimal electrode material for practical applications but also for achieving better control over rectifying performance in molecular devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7a–c
Fig. 8
Fig. 9
Fig. 10a–c

Similar content being viewed by others

References

  1. Nitzan A, Ratner MA (2003) Electron transport in molecular wire junctions. Science 300:1384–1389. doi:10.1126/science.1081572

    Article  CAS  Google Scholar 

  2. Halbritter A, Csonka S, Mihaly G, Jurdik E, Kolesnychenko OY, Shklyarevskii OI, Speller S, van Kempen H (2003) Transition from tunneling to direct contact in tungsten nanojunctions. Phys Rev B 68:035417. doi:10.1103/PhysRevB.68.035417

    Article  Google Scholar 

  3. Ulman A (1996) Formation and structure of self-assembled monolayers. Chem Rev 96:1533–1554. doi:10.1021/cr9502357

    Article  CAS  Google Scholar 

  4. Reed MA, Zhou C, Muller CJ, Burgin TP, Tour JM (1997) Conductance of a molecular junction. Science 278:25–2254. doi:10.1126/science.278.5336.252

    Article  Google Scholar 

  5. Chen J, Reed MA, Rawlett AM, Tour JM (1999) Large on-off ratios and negative differential resistance in molecular electronic device. Science 286:1550–1552. doi:10.1126/science.286.5444.1550

    Article  CAS  Google Scholar 

  6. Aviram A, Ratner MA (1974) Molecular rectifiers. Chem Phys Lett 29:277–283. doi:10.1016/0009-2614(74)85031-1, DOI:10.1016/0009-2614(74)85031-1

  7. Metzger RM (2003) Unimolecular electrical rectifiers. Chem Rev 103:3803–3834. doi:10.1021/cr020413d

    Article  CAS  Google Scholar 

  8. Zeng J, Chen KQ, He J, Zhang XJ, Sun CQ (2011) Edge hydrogenation-induced spin-filtering and rectifying behaviors in graphene nanoribbon heterojunctions. J Phys Chem C 115:25072–25076. doi:10.1021/jp208248v

    Google Scholar 

  9. Du Y, Pan H, Wang S, Wu T, Feng YP, Pan J, Wee ATS (2012) Symmetrical negative differential resistance behavior of a resistive switching device. ACS Nano 6:2517–2523. doi:10.1021/nn204907t

    Article  CAS  Google Scholar 

  10. Zheng X, Lu W, Abtew TA, Meunier V, Bernholc J (2010) Negative differential resistance in C60-based electronic devices. ACS Nano 4:7205–7210. doi:10.1021/nn101902r

    Article  CAS  Google Scholar 

  11. Zeng J, Chen KQ, He J, Zhang XJ, Hu WP (2011) Rectifying and successive switch behaviors induced by weak intermolecular interaction. Org Electron 12:1606–1611. doi:10.1016/j.orgel.2011.06.010, DOI:10.1016/j.orgel.2011.06.010

    Google Scholar 

  12. Poirier GE, Pylant ED (1996) The self-assembly mechanism of alkanedithiols on Au(111). Science 272:1145–1148. doi:10.1126/science.272.5265.1145

    Article  CAS  Google Scholar 

  13. Hong JP, Park AY, Lee S, Kang J, Shin N, Yoon DY (2008) Tuning of Ag work functions by self-assembled monolayers of aromatic thiols for an efficient hole injection for solution processed triisopropylsilylethynyl pentacene organic thin film transistors. Appl Phys Lett 92:143311. doi:10.1063/1.2907691

    Article  Google Scholar 

  14. Matsushita R, Kaneko S, Nakazumi T, Kinguchi M (2011) Effect of metal–molecule contact on electron-vibration interaction in single hydrogen molecule junction. Phys Rev B 84:245412. doi:10.1103/PhysRevB.84.245412

  15. Meng FX, Ming C, Zhuang J, Ning XJ (2013) Dependence of electronic rectification in carbon nanocone devices upon electrode materials. J Phys D Appl Phys 46:055309. doi:10.1088/0022-3727/46/5/055309

    Article  Google Scholar 

  16. Yaliraki SN, Kemp M, Ratner MA (1999) Conductance of molecular wires: influence of molecule-electrode binding. J Am Chem Soc 121:3428–3434. doi:10.1021/ja982918k

    Article  CAS  Google Scholar 

  17. Kondo H, Nara J, Kino H, Ohno T (2009) Transport properties of a biphenyl-based molecular junction system—the electrode metal dependence. J Phys Condens Matter 21:064220. doi:10.1088/0953-8984/21/6/064220

    Google Scholar 

  18. Taylor J, Brandbyge M, Stokbro K (2002) Theory of rectification in tour wires: the role of electrode coupling. Phys Rev Lett 89:138301. doi:10.1103/PhysRevLett.89.138301

    Article  Google Scholar 

  19. Venkataraman L, Klare JE, Nuckolls C, Hybertsen MS, Steigerwald ML (2006) Dependence of single-molecule junction conductance on molecular conformation. Nature (London) 442:904–907. doi:10.1038/nature05037

    Article  CAS  Google Scholar 

  20. Burkle M, Viljas JK, Vonlanthen D, Mishchenko A, Schon G, Mayor M, Wandlowski T, Pauly F (2012) Conductance mechanisms in biphenyl dithiol single-molecule junctions. Phys Rev B 85:075417. doi:10.1103/PhysRevB.85.075417

    Article  Google Scholar 

  21. Wang LH, Guo Y, Tian CF, Song XP, Ding BJ (2010) Torsion angle dependence of the rectifying performance in molecular device with asymmetrical anchoring groups. Phys Lett A 374:4876–4879. doi:10.1016/j.physleta.2010.09.068

    Article  CAS  Google Scholar 

  22. Li Z, Kosov DS (2006) Orbital interaction mechanisms of conductance enhancement and rectification by dithiocaboxylate anchoring group. J Phys Chem B 110:19116–19120. doi:10.1021/jp065120t

    Article  CAS  Google Scholar 

  23. QuantumWise A/S (2011) AtomistixToolKit version 2011.2.8 (http://quantumwise.com)

  24. Wang YF, Kroger J, Berndt R, Vazquez H, Brandbyge M, Paulsson M (2010) Atomic-scale control of electron transport through single molecules. Phys Rev Lett 104:176802. doi:10.1103/PhysRevLett.104.176802

    Article  CAS  Google Scholar 

  25. Lindsay SM, Ratner MA (2007) Molecular transport junctions: clearing mists. Adv Mater 19:23–31. doi:10.1002/adma.200601140

    Article  CAS  Google Scholar 

  26. Landauer R (1970) Electrical resistance of disordered one-dimensional lattices. Philos Mag 21:863–867. doi:10.1080/14786437008238472

    Article  CAS  Google Scholar 

  27. Buttiker M (1986) Four-terminal phase-coherent conductance. Phys Rev Lett 57:1761. doi:10.1103/PhysRevLett57.1761

    Article  Google Scholar 

  28. George CB, Ratner MA, Lambert JB (2009) Strong conductance in conformationally constrained oligosilane tunnel junctions. J Phys Chem A 113:3876–3880. doi:10.1021/jp809963r

    Article  CAS  Google Scholar 

  29. Perdew JP, Zunger A (1981) Self-interaction correction to density-functional approximations for many-electron systems. Phys Rev B 23:5048–5079. doi:10.1103/PhysRevB.23.5048

    Article  CAS  Google Scholar 

  30. Gonzalez MT, Wu S, Huber R, Wolen SJVD, Schonenberger C, Calame M (2006) Electrical conductance of molecular junctions by a robust statistical analysis. Nano Lett 6:2238–2242. doi:10.1021/nl061581e

    Article  CAS  Google Scholar 

  31. Geng WT, Nara J, Ohno T (2004) Adsorption of benzene thiolate on the (111) surface of M (M = Pt, Ag, Cu) and the conductance of M/benzene dithiolate/M molecular junctions: a first-principles study. Thin Solid Films 464:379–383. doi:10.1016/j.tsf.2004.06.083

    Article  Google Scholar 

  32. Nara J, Kino H, Kobayashi N, Tsukada, Ohno T (2003) Theoretical investigation of contact effects in conductance of single organic molecule. Thin Solid Films 438:221–224. doi:10.1016/S0040-6090(03)00774-0

    Article  Google Scholar 

  33. Tivanski AV, He Y, Borguet E, Liu H, Walker GC, Waldeck DH (2005) Conjugated thiol linker for enhanced electrical conduction of gold-molecule contacts. J Phys Chem B 109:5398–5402. doi:10.1021/jp50022d

    Article  CAS  Google Scholar 

  34. Pan JB, Zhang ZH, Ding KH, Deng XQ, Guo C (2011) Current rectification induced by asymmetrical electrode materials in a molecular device. Appl Phys Lett 98:092102. doi:10.1063/1.3556278

    Article  Google Scholar 

  35. Wang GM, Sandberg WC, Kenny SD (2006) Density functional study of a typical thiol tethered on a gold surface: ruptures under normal or parallel stretch. Nanotechnology 17:4819–4824. doi:10.1088/0957-4484/17/19/006

    Article  CAS  Google Scholar 

  36. Datta S, Tian W, Hong S, Reifenberger, Henderson JI, Kubiak CP (1997) Current–voltage characteristics of self-assembled monolayers by scanning tunneling microscopy. Phys Rev Lett 79:2530–2533. doi:10.1103/PhysRevLett.79.2530

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Computational Nanoscience & Technology Laboratory (CNTL), Atal Bihari Vajpayee (ABV)–Indian Institute of Information Technology & Management, Gwalior (India) for providing the computational and infrastructural facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pankaj Srivastava.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parashar, S., Srivastava, P. & Pattanaik, M. Electrode materials for biphenyl-based rectification devices. J Mol Model 19, 4467–4475 (2013). https://doi.org/10.1007/s00894-013-1938-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-013-1938-1

Keywords

Navigation