Skip to main content
Log in

Influence of the monoclinic and tetragonal zirconia phases on the water gas shift reaction. A theoretical study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

We present a theoretical study of the water gas shift reaction taking place on zirconia surfaces modeled by monoclinic and tetragonal clusters. In order to understand the charge transfer between the active species, in this work we analyze the influence of the geometry of monoclinic and tetragonal zirconia using reactivity descriptors such as electronic che − mical potential (μ), charge transfer (\( \left| {\varDelta N} \right| \)) and molecular hardness (η). We have found that the most preferred surface is tetragonal zirconia (tZrO 2) indicating also that low charge transfer systems will generate less stable intermediates, that will allow to facilitate desorption process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rhodes MD, Bell AT (2005) J Catal 233:198–209

    Article  CAS  Google Scholar 

  2. Shukla S, Seal S, Vij R, Rahman Z (2002) Nano Lett 2(9):989

    Article  CAS  Google Scholar 

  3. Sloczynski J, Grabowski R, Kozlowska A, Olszewski P, Stoch J, Skrzypek J, Lachowska M (2004) App Catal A General 278(1):11

    Article  CAS  Google Scholar 

  4. Tsoncheva T, Ivanova L, Paneva D, Mitov I, Minchev C, Froeba M (2009) Microporous Mesoporous Mater 120:389

    Article  CAS  Google Scholar 

  5. Águila G, Guerrero S, Araya P (2008) Catal Comm 9:2550–2554

    Article  Google Scholar 

  6. Aguila G, Guerrero S, Araya P (2008) Catal Comm 9:2550

    Article  CAS  Google Scholar 

  7. Pokrovski K, Jung KT, Bell AT (2001) Langmuir 17:4297–4303

    Article  CAS  Google Scholar 

  8. Rhodes MD, Pokrovski KA, Bell AT (2005) J Catal 233:210–220

    Article  CAS  Google Scholar 

  9. Hertl W (1989) Langmuir 5:96–100

    Article  CAS  Google Scholar 

  10. Korhonen ST, Calatayud M, Krause OI (2009) J Phys Chem C 112:16096–16102

    Article  Google Scholar 

  11. Walter EJ, Lewis SP, and Rappe AM (2001) Surf Sci p. 44

  12. Khaliullin RZ, Bell AT (2002) J Phys Chem B 106:7832

    Article  CAS  Google Scholar 

  13. Foschini C, Treu O, Juiz SA, Souza AG, Oliveira JBL, Longo E, Leite ER, Paskocimas CA, Varela JA (2004) J Mat Sci 39:1935

    Article  CAS  Google Scholar 

  14. Mantz YA, Gemmen RS (2010) J Phys Chem C 114:8014

    Article  CAS  Google Scholar 

  15. Milman V, Perlov A, Refson K, Clark SJ, Gavartin J, Winkler B (2009) J Phys Condens Matter 21:485404

    Article  Google Scholar 

  16. Herrera B, Gracia F, Araya P, Toro-Labbé A (2009) J Mol Model 15:405

    Article  CAS  Google Scholar 

  17. Parr RG, Yang W (1989) Density Functional Theory of Atoms and Molecules. Oxford University Press, New York

    Google Scholar 

  18. Parr RG, Yang W (1995) Annu Rev Phys Chem 46:701

    Article  CAS  Google Scholar 

  19. Parr RG, Pearson RG (1983) J Am Chem Soc 105:7512

    Article  CAS  Google Scholar 

  20. Jorgensen CK, Electronegativy. In: K.D Sen (ed) Structure and Bonding: chemical hardness. Berly, Germany

  21. Sanderson R (1955) Sciencie 122:207

    Article  Google Scholar 

  22. Gutiérrez-Oliva S, Jaque P, Toro-Labbé A (2000) J Phys Chem A 104:8955

    Article  Google Scholar 

  23. Herrera B, Toro-Labbé A, Gracia F, Araya P (2009) J Mol Model 15:405

    Article  CAS  Google Scholar 

  24. Howard CJ, Hill RJ, Riechert BE (1998) Acta Crystallogr B 44:116

    Article  Google Scholar 

  25. Geelings P, De Proft F, Langenaeker W (2003) Chem Rev 103:1793

    Article  Google Scholar 

  26. Janak JF (1978) Phys Rev B 18:7165

    Article  CAS  Google Scholar 

  27. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision C.02. Gaussian, Inc, Wallingford

    Google Scholar 

  28. Hay PJ, Wadt WR (1985) J Chem Phys 82:270

    Article  CAS  Google Scholar 

  29. Hay PJ, Wadt WR (1985) J Chem Phys 82:284

    Article  Google Scholar 

  30. Hay PJ, Wadt WR (1985) J Chem Phys 82:299

    Article  CAS  Google Scholar 

  31. Terki R, Bertrand J, Aourag H, Coddet C (2006) Mat Sci Semicond Proc 9:1006

    Article  CAS  Google Scholar 

  32. Korhonen ST, Calatayud M, Krause OI (2008) J Phys Chem C 112:6469

    Article  CAS  Google Scholar 

  33. Jung KT, Bell AT (2000) J Mol Catal 163:27

    Article  CAS  Google Scholar 

  34. Bachiller-Baeza B, Rodriguez-Ramos I, Guerrero-Ruiz A (1998) Langmuir 14:3556

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Fondo de Ciencia y Tecnología (FONDECYT) under grants Nº 1090460 and Nº 1120093, Fondo de Areas Prioritarias (FONDAP) Project Nº 11980002 (Centro Interdisciplinario de Materiales (CIMAT)). María Luisa Cerón wants to thank Santander-Universia for a Doctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Barbara Herrera or Alejandro Toro-Labbé.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cerón, M.L., Herrera, B., Araya, P. et al. Influence of the monoclinic and tetragonal zirconia phases on the water gas shift reaction. A theoretical study. J Mol Model 19, 2885–2891 (2013). https://doi.org/10.1007/s00894-012-1706-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1706-7

Keywords

Navigation