Skip to main content
Log in

Hydrogen bonds in galactopyranoside and glucopyranoside: a density functional theory study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Density functional theory calculations on two glycosides, namely, n-octyl-β-D-glucopyranoside (C8O-β-Glc) and n-octyl-β-D-galactopyranoside (C8O-β-Gal) were performed for geometry optimization at the B3LYP/6-31G level. Both molecules are stereoisomers (epimers) differing only in the orientation of the hydroxyl group at the C4 position. Thus it is interesting to investigate electronically the effect of the direction (axial/equatorial) of the hydroxyl group at the C4 position. The structure parameters of X-H∙∙∙Y intramolecular hydrogen bonds were analyzed, while the nature of these bonds and the intramolecular interactions were considered using the atoms in molecules (AIM) approach. Natural bond orbital analysis (NBO) was used to determine bond orders, charge and lone pair electrons on each atom and effective non-bonding interactions. We have also reported electronic energy and dipole moment in gas and solution phases. Further, the electronic properties such as the highest occupied molecular orbital, lowest unoccupied molecular orbital, ionization energy, electron affinity, electronic chemical potential, chemical hardness, softness and electrophilicity index, are also presented here for both C8O-β-Glc and C8O-β-Gal. These results show that, while C8O-β-Glc possess– only one hydrogen bond, C8O-β-Gal has two intramolecular hydrogen bonds, which further confirms the anomalous stability of the latter in self-assembly phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dembitsky VM (2004) Chemistry and biodiversity of the biologically active natural glycosides. Chem Biodivers 1(5):673–781. doi:10.1002/cbdv.200490060

    Article  CAS  Google Scholar 

  2. Dembitsky VM (2004) Astonishing diversity of natural surfactants: 1. Glycosides of fatty acids and alcohols. Lipids 39(10):933–953. doi:10.1007/s11745-004-1316-1

    Article  CAS  Google Scholar 

  3. Brooks NJ, Hamid HAA, Hashim R, Heidelberg T, Seddon JM, Conn CE, Husseini SMM, Zahid NI, Hussen RSD (2011) Thermotropic and lyotropic liquid crystalline phases of Guerbet branched-chain-D-glucosides. Liq Cryst 38(11–12):1725–1734. doi:10.1080/02678292.2011.625689

    Article  CAS  Google Scholar 

  4. Vill V, Hashim R (2002) Carbohydrate liquid crystals: structure-property relationship of thermotropic and lyotropic glycolipids. Curr Opin Colloid 7(5–6):395–409. doi:10.1016/s1359-0294(02)00091-2

    Article  CAS  Google Scholar 

  5. Ahmad N, Ramsch R, Esquena J, Solans C, Tajuddin HA, Hashim R (2012) Physico-chemical charactrization of natural-like branched-chain glycosides towards formation of hexosomes and vesicles. Langmuir 28(5):2395–2403

    Article  CAS  Google Scholar 

  6. Balzer D, Lüders H (2000) Nonionic surfactants: Alkyl polyglucosides. 91. CRC, Boca Raton

  7. Holmberg K (2001) Natural surfactants. Curr Opin Colloid 6(2):148–159

    Article  CAS  Google Scholar 

  8. Hill K, Rhode O (1999) Sugar-based surfactants for consumer products and technical applications. Fett-Lipid 101(1):25–33

    Article  CAS  Google Scholar 

  9. Jackson ML, Schmidt CF, Lichtenberg D, Litman BJ, Albert AD (1982) Solubilization of phosphatidylcholine bilayers by octyl glucoside. Biochemistry 21(19):4576–4582. doi:10.1021/bi00262a010

    Article  CAS  Google Scholar 

  10. Wang J, Balazs YS, Thompson LK (1997) Solid-state REDOR NMR distance measurements at the ligand site of a bacterial chemotaxis membrane receptor†. Biochemistry 36(7):1699–1703. doi:10.1021/bi962578k

    Article  CAS  Google Scholar 

  11. Harding MM, Anderberg PI, Haymet ADJ (2003) ‘Antifreeze’ glycoproteins from polar fish. Eur J Bio Chem 270(7):1381–1392. doi:10.1046/j.1432-1033.2003.03488.x

    Article  CAS  Google Scholar 

  12. Varki A (1993) Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 3(2):97–130. doi:10.1093/glycob/3.2.97

    Article  CAS  Google Scholar 

  13. Israelachvili J (1994) The science and applications of emulsions—an overview. Colloid Surf A 91:1–8. doi:10.1016/0927-7757(94)02743-9

    Article  CAS  Google Scholar 

  14. Helm CA, Israelachvili JN, McGuiggan PM (1992) Role of hydrophobic forces in bilayer adhesion and fusion. Biochemistry 31(6):1794–1805. doi:10.1021/bi00121a030

    Article  CAS  Google Scholar 

  15. Emsley J (1980) Very strong hydrogen bonding. Chem Soc Rev 9(1):91–124. doi:10.1039/CS9800900091

    Article  CAS  Google Scholar 

  16. Claesson PM, Kjellin M, Rojas OJ, Stubenrauch C (2006) Short-range interactions between non-ionic surfactant layers. Phys Chem Chem Phys 8(47):5501–5514. doi:10.1039/B610295F

    Article  CAS  Google Scholar 

  17. Larson JW, McMahon TB (1984) Gas-phase bihalide and pseudobihalide ions. An ion cyclotron resonance determination of hydrogen bond energies in XHY- species (X, Y = F, Cl, Br, CN). Inorg Chem 23(14):2029–2033. doi:10.1021/ic00182a010

    Article  CAS  Google Scholar 

  18. Jeffrey GA, Saenger W (1994) Hydrogen bonding in biological structures. Springer, Berlin

    Google Scholar 

  19. French AD, Brady JW (1990) Computer modeling of carbohydrates. Am Chem Soc 430. doi:10.1021/bk-1990-0430.ch001

  20. Fringant C, Tvaroska I, Mazeau K, Rinaudo M, Desbrieres J (1995) Hydration of α-maltose and amylose: molecular modelling and thermodynamics study. Carbohyd Res 278(1):27–41. doi:10.1016/0008-6215(95)00232-1

    Article  CAS  Google Scholar 

  21. Brady JW, Schmidt RK (1993) The role of hydrogen bonding in carbohydrates: molecular dynamics simulations of maltose in aqueous solution. J Phys Chem 97(4):958–966. doi:10.1021/j100106a024

    Article  CAS  Google Scholar 

  22. Chong TT, Heidelberg T, Hashim R, Gary S (2007) Computer modelling and simulations of thermotropic and lyotropic alkyl glycoside bilayers. Liq Cryst 34(3):349–363. doi:10.1080/02678290601111556

    Article  CAS  Google Scholar 

  23. Arunan E, Desiraju G, Klein R, Sadlej J, Scheiner S, Alkorta I, Clary D, Crabtree R, Dannenberg J, Hobza P (2010) Definition of the Hydrogen Bond(IUPAC Recommendation). Pure Appl Chem 83(8):1637–1641. doi:10.1351/PacRec-10-01-02

    Article  Google Scholar 

  24. Bader RFW (1991) A quantum theory of molecular structure and its applications. Chem Rev 91(5):893–928. doi:10.1021/cr00005a013

    Article  CAS  Google Scholar 

  25. Bader R, Essen H (1984) The characterization of atomic interactions. J Chem Phys 80:1943-1960

    Article  CAS  Google Scholar 

  26. Arnold WD, Oldfield E (2000) The chemical nature of hydrogen bonding in proteins via NMR: j-couplings, chemical shifts, and AIM theory. J Am Chem Soc 122(51):12835–12841. doi:10.1021/ja0025705

    Article  CAS  Google Scholar 

  27. Espinosa E, Molins E, Lecomte C (1998) Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. Chem Phys Lett 285(3–4):170–173

    Article  CAS  Google Scholar 

  28. Grabowski SJ (2001) A new measure of hydrogen bonding strength-ab initio and atoms in molecules studies. Chem Phys Lett 338(4–6):361–366. doi:10.1016/S0009-2614(01)00265-2

    Article  CAS  Google Scholar 

  29. Ikushima Y, Hatakeda K, Saito N, Arai M (1998) An in situ Raman spectroscopy study of subcritical and supercritical water: the peculiarity of hydrogen bonding near the critical point. J Chem Phys 108:5855–5860

    Article  CAS  Google Scholar 

  30. Ionescu AR, Bérces A, Zgierski MZ, Whitfield DM, Nukada T (2005) Conformational pathways of saturated six-membered rings. A static and dynamical density functional study. J Phys Chem A 109(36):8096–8105. doi:10.1021/jp052197t

    Article  CAS  Google Scholar 

  31. Barnett CB, Naidoo KJ (2008) Stereoelectronic and solvation effects determine hydroxymethyl conformational preferences in monosaccharides. J Phys Chem B 112(48):15450–15459

    Article  CAS  Google Scholar 

  32. Grabowski SJ (2001) Ab Initio calculations on conventional and unconventional hydrogen bondsstudy of the hydrogen bond strength. J Phys Chem A 105(47):10739–10746. doi:10.1021/jp011819h

    Article  CAS  Google Scholar 

  33. Gilli P, Bertolasi V, Ferretti V, Gilli G (1994) Covalent nature of the strong homonuclear hydrogen bond. Study of the OH–-O system by crystal structure correlation methods. J Am Chem Soc 116(3):909–915

    Article  CAS  Google Scholar 

  34. Mó O, Yáñez M, Elguero J (1992) Cooperative (nonpairwise) effects in water trimers: an ab initio molecular orbital study. J Chem Phys 97:6628–6638

    Article  Google Scholar 

  35. Vill V (2006) The stereochemistry of glycolipids. A key for understanding membrane functions? Liq Cryst 33(11–12):1351–1352. doi:10.1080/02678290601140571

    Article  CAS  Google Scholar 

  36. Espinosa E, Souhassou M, Lachekar H, Lecomte C (1999) Topological analysis of the electron density in hydrogen bonds. Acta Crystallogr Sec B 55(4):563–572. doi:10.1107/S0108768199002128

    Google Scholar 

  37. Weinhold F (1997) Nature of H-bonding in clusters, liquids, and enzymes: an ab initio, natural bond orbital perspective. J Mol Struct 398–399:181–197. doi:10.1016/S0166-1280(96)04936-6

    Google Scholar 

  38. Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88(6):899–926. doi:10.1021/cr00088a005

    Article  CAS  Google Scholar 

  39. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98(7):5648–5652. doi:10.1063/1.464913

    Article  CAS  Google Scholar 

  40. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37(2):785–789

    Article  CAS  Google Scholar 

  41. Ditchfield R, Hehre W, Pople JA (1971) Self-consistent molecular-orbital methods. IX. An extended Gaussian-type basis for molecular-orbital studies of organic molecules. J Chem Phys 54:724

    Article  CAS  Google Scholar 

  42. Francl MM, Pietro WJ, Hehre WJ, Binkley JS, Gordon MS, DeFrees DJ, Pople JA (1982) Self-consistent molecular orbital methods. XXIII. A polarization–type basis set for second–row elements. J Chem Phys 77(7):3654–3665. doi:10.1063/1.444267

    Article  CAS  Google Scholar 

  43. Miertus S, Scrocco E, Tomasi J (1981) Electrostatic interaction of a solute with a continuum. A direct utilizaion of ab initio molecular potentials for the prevision of solvent effects. Chem Phys 55(1):117–129

    Article  CAS  Google Scholar 

  44. Frisch MJ, Trucks GW, Schlegel HB et al (2009) Gaussian 09, Revision A. 02. Wallingford CT

  45. Dennington R, Keith T, Millam JGV (2008) Version 5.0. 8. Semichem Inc, Shawnee Mission, KS

  46. Bader R (1995) Atoms in molecules. A quantum theory. Oxford University Press, Oxford

    Google Scholar 

  47. Popelier P (2000) Atoms in molecules. An introduction. Prentice Hall

  48. Biegler-König F, Schönbohm J, Derdau R, Bayles D, Bader R (2002) AIM2000, version 2.0. University of Applied Sciences, Bielefeld

    Google Scholar 

  49. Glendening E, Reed A, Carpenter J, Weinhold F (2003) NBO 3.1

  50. Schuster P, Zundel G, Sandorfy C (1976) Hydrogen bond; recent developments in theory and experiments. North-Holland, Amsterdam

    Google Scholar 

  51. Pimentel GC, McClellan AL (1960) The hydrogen bond. Freeman, San Francisco

    Google Scholar 

  52. Momany FA, Appell M, Willett JL, Schnupf U, Bosma WB (2006) DFT study of α- and β-d-galactopyranose at the B3LYP/6-311++G** level of theory. Carbohyd Res 341(4):525–537

    Article  CAS  Google Scholar 

  53. Panico R, Powell WH, Richer JC (1993) A guide to IUPAC nomenclature of organic compounds: recommendations 1993. International Union of Pure Applied Chemistry. Commission on the Nomenclature of Organic Chemistry. Blackwell Scientific, Oxford

    Google Scholar 

  54. Momany FA, Appell M, Willett JL, Bosma WB (2005) B3LYP/6-311++G** geometry-optimization study of pentahydrates of a- and b-D-glucopyranose. Carbohyd Res 340:1638–1655

    Article  CAS  Google Scholar 

  55. Appell M, Willett JL, Momany FA (2005) DFT study of α- and β-d-mannopyranose at the B3LYP/6-311++G** level. Carbohyd Res 340(3):459–468

    Article  CAS  Google Scholar 

  56. Silvestrelli PL, Parrinello M (1999) Water molecule dipole in the gas and in the liquid phase. Phys Rev Lett 82(16):3308–3311

    Article  CAS  Google Scholar 

  57. Parr RG, Lv S, Liu S (1999) Electrophilicity index. J Am Chem Soc 121(9):1922–1924. doi:10.1021/ja983494x

    Article  CAS  Google Scholar 

  58. Ortiz EV, López MB (2007) Density Functional Theory (DFT) applied to the study of the reactivity of platinum surface modified by nickel nanoparticles. Mec Comp 26:1692

    Google Scholar 

  59. Pearson RG, Pearson R (1997) Chemical hardness: applications from molecules to solids. Wiley-VCH, Weinheim

    Book  Google Scholar 

  60. Parr RG, Zhou Z (1993) Absolute hardness: unifying concept for identifying shells and subshells in nuclei, atoms, molecules, and metallic clusters. Acc Chem Res 26(5):256–258. doi:10.1021/ar00029a005

    Article  CAS  Google Scholar 

  61. Pearson RG (1988) Absolute electronegativity and hardness: application to inorganic chemistry. Inorg Chem 27(4):734–740. doi:10.1021/ic00277a030

    Article  CAS  Google Scholar 

  62. Pearson RG (1987) Recent advances in the concept of hard and soft acids and bases. J Chem Edu 64(7):doi:10.1021/ed064p561

    Article  Google Scholar 

  63. Bader RFW (1990) Atoms in molecules-a quantum theory. Oxford University Press, New York

    Google Scholar 

  64. Popelier P, Bader R (1992) The existence of an intramolecular C-H… O hydrogen bond in creatine and carbamoyl sarcosine. Chem Phys Lett 189(6):542–548. doi:10.1016/0009-2614(92)85247-8

    Article  CAS  Google Scholar 

  65. Popelier PLA (1998) Characterization of a dihydrogen bond on the basis of the electron density. J Phys Chem A 102(10):1873–1878. doi:10.1021/jp9805048

    Article  CAS  Google Scholar 

  66. Nazari F, Doroodi Z (2010) The substitution effect on heavy versions of cyclobutadiene. Int J Quantum Chem 110(8):1514–1528. doi:10.1002/qua.22271

    CAS  Google Scholar 

  67. Reed AE, Weinhold F (1985) Natural localized molecular orbitals. J Chem Phys 83(4):1736–1740

    Article  CAS  Google Scholar 

  68. Henderson R (2007) Wavelength considerations. Instituts für Umform-und Hochleistungs. Archived from the original on:10–28

  69. Amerov A, Chen J, Arnold M (2004) Molar absorptivities of glucose, water and other biological molecules over the first overtone and combination regions of the near infrared spectrum. Appl Spect J 58:1195–1204

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the UM.C/625/1/HIR-MOHE/05 grant for supporting this project and the Centre for Information Technology (PTM), University of Malaya, for providing the high performance computing facility (HPC). Discussion with professor Marek Janusz Wójcik ( Jagiellonian University, Krakow, Poland) is gratefully appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahrabatoul Mosapour Kotena.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mosapour Kotena, Z., Behjatmanesh-Ardakani, R., Hashim, R. et al. Hydrogen bonds in galactopyranoside and glucopyranoside: a density functional theory study. J Mol Model 19, 589–599 (2013). https://doi.org/10.1007/s00894-012-1576-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1576-z

Keywords

Navigation