Skip to main content
Log in

The assessment and application of an approach to noncovalent interactions: the energy decomposition analysis (EDA) in combination with DFT of revised dispersion correction (DFT-D3) with Slater-type orbital (STO) basis set

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

An assessment study is presented about energy decomposition analysis (EDA) in combination with DFT including revised dispersion correction (DFT-D3) with Slater-type orbital (STO) basis set. There has been little knowledge about the performance of the EDA + DFT-D3 concerning STOs. In this assessment such an approach was applied to calculate noncovalent interaction energies and their corresponding components. Complexes in S22 set were used to evaluate the performance of EDA in conjunction with four representative types of GGA-functionals of DFT-D3 (BP86-D3, BLYP-D3, PBE-D3 and SSB-D3) with three STO basis sets ranging in complexity from DZP, TZ2P to QZ4P. The results showed that the approach of EDA + BLYP-D3/TZ2P has a better performance not only in terms of calculating noncovalent interaction energy quantitatively but also in analyzing corresponding energy components qualitatively. This approach (EDA + BLYP-D3/TZ2P) was thus applied further to two representative large-system complexes including porphine dimers and fullerene aggregates to gain a better insight into binding characteristics.

The assessment of EDA+DFT-D3/STOs to noncovalent interactions

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Prins LJ, Scrimin P (2009) Angew Chem Int Ed 48:2288–2306

    Article  CAS  Google Scholar 

  2. Dunitz JD, Gavezzotti A (2009) Chem Soc Rev 38:2622–2633

    Article  CAS  Google Scholar 

  3. Černý J, Hobza P (2007) Phys Chem Chem Phys 9:5291–5303

    Google Scholar 

  4. Lein M, Frenking G (2005) The nature of the chemical bond in the light of an energy decomposition analysis. In: Dykstra CF, Frenking G, Kim KS, Scuseria GE (eds) Theory and applications of computational chemistry: the first forty years. Elsevier, Amsterdam, pp 291–372

    Chapter  Google Scholar 

  5. Hopffgarten MV, Frenking G (2012) WIREs Comput Mol Sci 2:43–62

    Article  Google Scholar 

  6. Mo Y, Bao P, Gao J (2011) Phys Chem Chem Phys 13:6760–6775

    Article  CAS  Google Scholar 

  7. Su P, Li H (2009) J Chem Phys 131:014102

    Article  Google Scholar 

  8. Reinhardt P, Piquemal JP, Savin A (2008) J Chem Theor Comput 4:2020–2029

    Article  CAS  Google Scholar 

  9. Mitoraj MP, Michalak A, Ziegler T (2009) J Chem Theor Comput 5:962–975

    Article  CAS  Google Scholar 

  10. Vyboishchikov SF, Krapp A, Frenking G (2008) J Chem Phys 129:144111

    Article  Google Scholar 

  11. Cybulski H, Sadlej J (2008) J Chem Theor Comput 4:892–897

    Article  Google Scholar 

  12. Rajchel Ł, Zuchowski PS, Szczesniak MM, Chałasinski G (2010) Phys Rev Lett 104:163001

    Article  Google Scholar 

  13. Szalewicz K (2012) WIREs Comput Mol Sci 2:254–272

    Article  CAS  Google Scholar 

  14. Jeziorski B, Moszynski R, Szalewicz K (1994) Chem Rev 94:1887–1930

    Article  CAS  Google Scholar 

  15. Hohenstein EG, Sherrill CD (2010) J Chem Phys 133:014101

    Article  Google Scholar 

  16. Morokuma K (1971) J Chem Phys 55:1236–1244

    Article  CAS  Google Scholar 

  17. Morokuma K (1977) Acc Chem Res 10:294–300

    Article  CAS  Google Scholar 

  18. Ziegler T, Rauk A (1977) Theor Chim Acta 46:1–10

    CAS  Google Scholar 

  19. Hesselmann A (2012) J Phys Chem A 115:11321–11330

    Article  Google Scholar 

  20. Jurečka P, Šponer J, Černý J, Hobza P (2006) Phys Chem Chem Phys 8:1985–1993

    Article  Google Scholar 

  21. Pitoňák M, Neogrády P, Černý J, Grimme S, Hobza P (2009) Chem Phys Chem 10:282–289

    Article  Google Scholar 

  22. Marshall MS, Sears JS, Burns LA, Brédas JL, Sherrill CD (2010) J Chem Theory Comput 6:3681–3687

    Article  CAS  Google Scholar 

  23. Pitoňák M, Řezáč J, Hobza P (2010) Phys Chem Chem Phys 12:9611–9614

    Article  Google Scholar 

  24. Riley KE, Pitoňák M, Jurečka P, Hobza P (2010) Chem Rev 110:5023–5063

    Article  CAS  Google Scholar 

  25. Pavlov A, Mitrasinovic PM (2010) Curr Org Chem 14:129–137

    Article  CAS  Google Scholar 

  26. Sherrill CD (2009) Computations of Noncovalent π Interactionsin In: Lipkowitz KB, Cundari TR (Eds) Reviews in computational chemistry, vol 26, Wiley, New York, pp 1-38

  27. Zhao Y, Schultz NE, Truhlar DG (2006) J Chem Theory Comput 2:364–382

    Article  Google Scholar 

  28. Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215–241

    Article  CAS  Google Scholar 

  29. Grimme S (2006) J Comp Chem 27:1787–1799

    Article  CAS  Google Scholar 

  30. von Lilienfeld OA, Tavernelli I, Rothlisberger U (2004) Phys Rev Lett 93:153004

    Article  Google Scholar 

  31. Grimme S (2006) J Chem Phys 124:034108

    Article  Google Scholar 

  32. Grimme S (2011) WIREs Comput Mol Sci 1:211–228

    Article  CAS  Google Scholar 

  33. Grimme S, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132:154104

    Article  Google Scholar 

  34. dftd3 program, see http://toc.uni-muenster.de/DFTD3/

  35. Takatani T, Hohenstein EG, Malagoli M, Marshall MS, Sherrill CD (2010) J Chem Phys 132:144104

    Article  Google Scholar 

  36. Riley KE, Pitoňák M, Černý J, Hobza P (2010) J Chem Theory Comput 6:66–80

    Article  CAS  Google Scholar 

  37. van Lenthe E, Baerends EJ (2003) J Comput Chem 24:1142–1156

    Article  CAS  Google Scholar 

  38. Weigend F, Ahlrichs R (2005) Phys Chem Chem Phys 7:3297–3305

    Article  CAS  Google Scholar 

  39. Güell M, Luis JM, Solà M, Swart M (2008) J Phys Chem A 112:6384–6391

    Article  Google Scholar 

  40. Burns LA, Vázquez-Mayagoitia Á, Sumpter BG, Sherrill CD (2011) J Chem Phys 134:084107

    Article  Google Scholar 

  41. Grimme S, Antony J, Schwabe T, Mück-Lichtenfeld C (2007) Org Biomol Chem 5:741–758

    Article  CAS  Google Scholar 

  42. Goerigk L, Grimme S (2011) Phys Chem Chem Phys 13:6670–6688

    Article  CAS  Google Scholar 

  43. Peverati R, Baldridge KK (2008) J Chem Theory Comput 4:2030–2048

    Article  CAS  Google Scholar 

  44. Thanthiriwatte KS, Hohenstein EG, Burns LA, Sherrill CD (2011) J Chem Theory Comput 7:88–96

    Article  CAS  Google Scholar 

  45. Hohenstein EG, Chill ST, Sherrill CD (2008) J Chem Theory Comput 4:1996–2000

    Article  CAS  Google Scholar 

  46. Korth M, Thiel W (2011) J Chem Theory Comput 7:2929–2936

    Article  CAS  Google Scholar 

  47. Goerigk L, Grimme S (2010) J Chem Theory Comput 6:107–126

    Article  CAS  Google Scholar 

  48. Safonov AA, Rykova EA, Bagaturyants AA, Sazhnikov VA, Alfimov MV (2011) J Mol Model 17:1855–1862

    Article  CAS  Google Scholar 

  49. Mück-Lichtenfeld C, Grimme S (2007) Mol Phys 105:2793–2798

    Article  Google Scholar 

  50. Baerends EJ, Autschbach J, Bashford D, Bérces A, Bickelhaupt FM, Bo C, Boerrigter PM, Cavallo L, Chong DP, Deng L, Dickson RM, Ellis DE, van Faassen M, Fan L, Fischer TH, Fonseca Guerra C, Ghysels A, Giammona A, van Gisbergen SJA, Götz AW, Groeneveld JA, Gritsenko OV, Grüning M, Harris FE, van den Hoek P, Jacob CR, Jacobsen H, Jensen L, van Kessel G, Kootstra F, Krykunov MV, van Lenthe E, McCormack DA, Michalak A, Mitoraj M, Neugebauer J, Nicu VP, Noodleman L, Osinga VP, Patchkovskii S, Philipsen PHT, Post D, Pye CC, Ravenek W, Rodríguez JI, Ros P, Schipper PRT, Schreckenbach G, Seth M, Snijders JG, Solà M, Swart M, Swerhone D, te Velde G, Vernooijs P, Versluis L, Visscher L, Visser O, Wang F, Wesolowski TA, van Wezenbeek EM, Wiesenekker G, Wolff SK, Woo TK, Yakovlev AL, Ziegler T (2012) ADF version 2012.01, SCM, Theoretical Chemistry. Vrije Universiteit, Amsterdam, http://www.scm.com

    Google Scholar 

  51. Grimme S, Ehrlich S, Goerigk L (2011) J Comput Chem 32:1456–1465

    Article  CAS  Google Scholar 

  52. Riley KE, Hobza P (2008) J Chem Theory Comput 4:232–242

    Article  CAS  Google Scholar 

  53. Ohira S, Brédas J-L (2009) J Mater Chem 19:7545–7550

    Article  CAS  Google Scholar 

  54. Ahn TK, Kim KS, Kim DY, Noh SB, Aratani N, Ikeda C, Osuka A, Kim D (2006) J Am Chem Soc 128:1700–1704

    Article  CAS  Google Scholar 

  55. Aittala PJ, Cramariuc O, Hukka TI (2011) Chem Phys Lett 501:226–231

    Article  CAS  Google Scholar 

  56. Day PN, Nguyen KA, Pachter R (2008) J Chem Theory Comput 4:1094–1106

    Article  CAS  Google Scholar 

  57. Yang Q-Z, Khvostichenko D, Atkinson JD, Boulatov R (2008) Chem Commun 38:963–965

    Article  Google Scholar 

  58. Podeszwa R, Szalewicz K (2008) Phys Chem Chem Phys 10:2735–2746

    Article  CAS  Google Scholar 

  59. Hohenstein EG, Sherrill CD (2009) J Phys Chem A 113:878–886

    Article  CAS  Google Scholar 

  60. Gayathri SS, Wielopolski M, Pérez EM, Fernández G, Sánchez L, Viruela R, Ortí E, Guldi DM, Martín N (2009) Angew Chem Int Ed 48:815–819

    Article  CAS  Google Scholar 

  61. González-Rodríguez D, Carbonell E, Guldi DM, Torres T (2009) Angew Chem Int Ed 48:8032–8036

    Article  Google Scholar 

  62. Pérez EM, Capodilupo AL, Fernández G, Sánchez L, Viruela PM, Viruela R, Ortí E, Bietti M, Martín N (2008) Chem Commun 38:4567–4569

    Article  Google Scholar 

  63. Pérez EM, Martín N (2008) Chem Soc Rev 37:1512–1519

    Article  Google Scholar 

  64. Kawase T, Kurata H (2006) Chem Rev 106:5250–5273

    Article  CAS  Google Scholar 

  65. Wong BM (2009) J Comput Chem 30:51–56

    Article  CAS  Google Scholar 

  66. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian 09 C01. Gaussian Inc, Wallingford, CT

    Google Scholar 

Download references

Acknowledgments

Financial support by the National Natural Science Foundation of China (No. 21173069) is acknowledged. We are grateful to Dr. Andreas Hesselmann at Lehrstuhl für Theoretische Chemie, Universität Erlangen-Nürnberg for his results of SAPT-DFT calculation. Authors would also like to thank Prof. Christian Mück-lichtenfeld at Organisch-Chemisches Institut der Universität Münster for his structure of porphine dimers. The computation of the Gaussian is supported by the School of Chemical and Environmental Sciences, Henan Normal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liuping Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, W., Feng, H., Xuan, X. et al. The assessment and application of an approach to noncovalent interactions: the energy decomposition analysis (EDA) in combination with DFT of revised dispersion correction (DFT-D3) with Slater-type orbital (STO) basis set. J Mol Model 18, 4577–4589 (2012). https://doi.org/10.1007/s00894-012-1425-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1425-0

Keywords

Navigation