Skip to main content
Log in

Architecture, electronic structure and stability of TM@Ge(n) (TM = Ti, Zr and Hf; n = 1-20) clusters: a density functional modeling

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The present study reports the geometry, electronic structure and properties of neutral and anionic transition metal (TM = Ti, Zr and Hf)) doped germanium clusters containing 1 to 20 germanium atoms within the framework of linear combination of atomic orbitals density functional theory under spin polarized generalized gradient approximation. Different parameters, like, binding energy (BE), embedding energy (EE), energy gap between the highest occupied and lowest unoccupied molecular orbitals (HOMO-LUMO), ionization energy (IP), electron affinity (EA), chemical potential etc. of the energetically stable clusters (ground state cluster) in each size are calculated. From the variation of these parameters with the size of the clusters the most stable cluster within the range of calculation is identified. It is found that the clusters having 20 valence electrons turn out to be relatively more stable in both the neutral and the anionic series. The sharp drop in IP as the valence electron count increases from 20 to 21 in neutral cluster is in agreement with predictions of shell models. To study the vibrational nature of the clusters, IR and Raman spectrum of some selected TM@Gen (n = 15,16,17) clusters are also calculated and compared. In the end, relevance of calculated results to the design of Ge-based super-atoms is discussed.

TM@Ge(n) (TM = Ti, Zr and Hf; n = 1-20) clusters

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ho KM, Shvartsberg AA, Pan B, Lu ZY, Wang CZ, Wacker JG, Fye JL, Jarrod MF (1998) Nature 392:582–585

    Article  CAS  Google Scholar 

  2. Wang J, Chen X, Liu JH (2008) J Phys Chem A 112:8868–8876

    Article  CAS  Google Scholar 

  3. Zhao WJ, Wang YX (2008) Chem Phys 352:291–296

    Article  CAS  Google Scholar 

  4. Jarrold MF, Constant VA (1991) Phys Rev Lett 67:2994–2997

    Article  CAS  Google Scholar 

  5. Benedict LX, Puzer A, Willimson AJ, Grossman JC, Galli G, Klepeis JE, Raty JY, Pankratov O (2003) Phys Rev B 68:85310–85317

    Article  Google Scholar 

  6. Brown WL, Freeman RR, Raghavachari K, Schluter M (1987) Science 235:860–865

    Article  CAS  Google Scholar 

  7. Hiura H, Miyazaki T, Kanayama T (2001) Phys Rev Lett 86:1733–1736

    Article  CAS  Google Scholar 

  8. Hayashi S, Kanzaya Y, Kataoka M, Nagarede T, Yamamoto K (1993) Z Phys D Atom Mol Cl 26:144–146

    Article  CAS  Google Scholar 

  9. Bandyopadhyay D, Kaur P, Sen P (2010) J Phys Chem A 114:12986–12991

    Article  CAS  Google Scholar 

  10. Polman A (2002) Nat Matters 1:10–12

    Article  CAS  Google Scholar 

  11. Bandyopadhyay D, Sen P (2010) J Phys Chem A 114:1835–1842

    Article  CAS  Google Scholar 

  12. Jarrold MF, Bower JE (1992) J Chem Phys 96:9180–9190

    Article  CAS  Google Scholar 

  13. Kumar V, Kawazoe Y (2001) Phys Rev Lett 87:045503–045506

    Article  CAS  Google Scholar 

  14. Kumar V, Kawazoe Y (2002) Phys Rev Lett 88:235504–235507

    Article  Google Scholar 

  15. Bandyopadhyay D (2008) J Appl Phys 104:084308–084314

    Article  Google Scholar 

  16. Bandyopadhyay D (2009) Mol Simul 35:381–394

    Article  CAS  Google Scholar 

  17. Kumar M, Bandyopadhyay D (2008) Chem Phys 353:170–176

    Article  Google Scholar 

  18. Beck SM (1987) J Chem Phys 87:4233–4234

    Article  CAS  Google Scholar 

  19. Beck SM (1989) J Chem Phys 90:6306–6312

    Article  CAS  Google Scholar 

  20. Ohara M, Miyajima K, Pramann A, Nakajima A, Kaya K (2002) J Phys Chem A 106:3702–3705

    Article  CAS  Google Scholar 

  21. Han JG (2000) Chem Phys Lett 324:143–148

    Article  CAS  Google Scholar 

  22. Wang JL, Wang GH, Zhao JJ (2001) Phys Rev B 64:205411–305415

    Article  Google Scholar 

  23. Hou XJ, Gopakumar G, Lievens P, Nguyen MT (2997) J Phys Chem A 111:13544–13553

    Article  Google Scholar 

  24. Negishi Y, Kawamata H, Hayase T, Gomei T, Kishi R, Hayakawa F, Nakajima A, Kaya K (1997) Chem Phys Lett 269:199–207

    Article  CAS  Google Scholar 

  25. Bandyopadhyay D (2009) Nanotechnology 20:275202–275213

    Article  Google Scholar 

  26. Huheey JE, Keiter EA, Keiter RL (2000) Inorganic Chemistry: principles of structure and reactivity, 4th edn. Harper-Collins College Publisher, New York

    Google Scholar 

  27. Sen P, Mitas L (2003) Phys Rev B 68:155404–155407

    Article  Google Scholar 

  28. Reveles JU, Khanna SN (2005) Phys Rev B 72:165413–165418

    Article  Google Scholar 

  29. Guo LJ, Zhao G, Gu Y, Liu X, Zeng Z (2008) Phys Rev B 77:195417–195424

    Article  Google Scholar 

  30. Wigner E, Witmer EE (1928) Z Phys 51:859–886

    Article  CAS  Google Scholar 

  31. Koyasu K, Akutsu M, Mitsui M, Nakajima A (2005) J Am Chem Soc 127:4998–4999

    Article  CAS  Google Scholar 

  32. Kumar V (2003) Eur Phys J D 24:227–232

    Article  CAS  Google Scholar 

  33. Burke K, Perdew JP et al. (1998) In: Dobson JF, Vignale G, Das MP (eds) Electronic Density Functional Theory: Recent Progress and New Directions. Plenum

  34. Perdew JP (1991) In: Ziesche P, Eschrig H (eds) Electronic Structure of solids ’91. Akademie, Berlin

    Google Scholar 

  35. Becke AD (1988) Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  36. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  37. Wang J, Han GJ (2005) J Chem Phys 123:064306–064321

    Article  Google Scholar 

  38. Han JG, Hagelberg F (2001) J Mol Struct THEOCHEM 549:165–180

    Article  CAS  Google Scholar 

  39. Guo P, Ren ZY, Wang F, Bian J, Han JG, Wang GH (2004) J Chem Phys 121:12265–12275

    Article  CAS  Google Scholar 

  40. Guo LJ, Liu X, Zhaoa GF, Luo YH (2007) J Chem Phys 126:234704–234710

    Article  Google Scholar 

  41. Nagendran S, Sen SS, Roesky HW, Koley D, Grubmüller H, Pal A, Herbst-Irmer R (2008) Organometallics 27:5459–5463

    Article  CAS  Google Scholar 

  42. Khon W, Sham LJ (1965) Phys Rev 140:A1133–A1138

    Article  Google Scholar 

  43. Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu B, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (2004) Gaussian 03, Revision E.01. Gaussian, Inc, Wallingford, CT

    Google Scholar 

  44. Lu J, Nagase S (2003) Chem Phys Lett 372:394–398

    Article  CAS  Google Scholar 

  45. Kumar V, Kawazoe Y (2002) Appl Phys Lett 80:859–861

    Article  CAS  Google Scholar 

  46. Kumar V, Kawazoe Y (2007) Phys Rev B 75:155425–155435

    Article  Google Scholar 

  47. de Heer WA (1993) Rev Mod Phys 65:611–676

    Article  Google Scholar 

Download references

Acknowledgments

Complete computations using Gaussian 03 were performed at the cluster computing facility, Harish-Chandra Research Institute, Allahabad, UP, India (http://cluster.hri.res.in).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debashis Bandyopadhyay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, M., Bhattacharyya, N. & Bandyopadhyay, D. Architecture, electronic structure and stability of TM@Ge(n) (TM = Ti, Zr and Hf; n = 1-20) clusters: a density functional modeling. J Mol Model 18, 405–418 (2012). https://doi.org/10.1007/s00894-011-1122-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-011-1122-4

Keywords

Navigation