Skip to main content
Log in

XRD and DFT-modelized structures of a pteridine-2,4(1H,3H)-dithione/N,N′-dimethylformamide H-bonded cluster (2:2). MO study of the coordination ability

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The title compound, C6H4N4S2·C3H7NO, crystallizes in the monoclinic space group C 2/c with a = 26.673(5), b = 5.397(1), c = 16.522(3) Å, β = 95.49(3)°, Z = 8, R = 0.0461 for 1891 reflections with I > 2σ(I) and 174 parameters (4 restraints). Single pteridine-2,4(1 H,3 H)-dithione and dimethylformamide molecules are packed via N-H···O and N-H···N hydrogen bonds into centrosymmetric clusters containing two molecules of each class; these are roughly planar and placed into two different sets of planes -both containing the [−1,0,2] direction- mutually angled by 77.8°. Despite the distance between two neighbor planes in each set is ca. 3.4 Å, the analysis of π,π-stacking interactions shows too large slippage distance between aromatic rings from contiguous planes. Additional σ-π interactions between S2, S4 and O1S atoms and pyrazine or pyrimidine rings from adjacent molecules are present. The structure for the cluster [DTLM-DMF]2 has been simulated by using the density functionals B1B95 (6-31 G(d) and 6-31+G(d) basis sets) and M06-2X (6-31 G(d) basis set). As a result, the M06-2X/6-31 G(d) approach provides the best agreement with the experimental XRD data. For a better evaluation of the intermolecular interactions, the superposition of two dimeric adducts [DTLM-DMF]2 has been modelized. The binding capability of DTLM ligand was simulated on systems containing two metal-binding modes to palladium (N5-S4 and N1-S2) with different chelate size. The analysis of the frontier orbitals points out that the link with the metallic centers will take place through the sulfur atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Milstien S, Kapatos G, Levine RA, Shane B (2002) Chemistry and Biology of Pteridines and Folates, Proceedings of the 12th International Symposium on Pteridines and Folates. Kluwer, Boston, pp 60–139

    Google Scholar 

  2. Taylor EC (1993) Chemistry and Biology of Pteridines and Folates. In: Ayling JE, Nair MG, Baugh CM (eds) Advances in experimental medicine and biology, vol 338. Plenum, New York, pp 387–408

    Google Scholar 

  3. Prins LHA, Petzer JP, Malan SF (2009) Bioorg Med Chem 17:7523–7530

    Article  CAS  Google Scholar 

  4. Ding Y, Girardet JL, Smith KL, Larson G, Prigaro B, Lai VCH, Zhong W, Wu JZ (2005) Bioorg Med Chem Lett 15:675–678

    Article  CAS  Google Scholar 

  5. Gomtsyan A, Didomenico S, Chih-Hung L, Stewart AO, Bhagwat SS, Kowaluk A, Jarvis MF (2004) Bioorg Med Chem Lett 14:4165–4168

    Article  CAS  Google Scholar 

  6. Schneider HJ, Pfleiderer W (1974) Chem Ber 107:3377–3394

    Article  CAS  Google Scholar 

  7. Acuña-Cueva ER, Hueso-Ureña F, Jiménez-Pulido SB, Moreno-Carretero MN (2000) J Mol Model 6:433–437

    Article  Google Scholar 

  8. Acuña-Cueva ER, Jiménez-Pulido SB, Moreno-Carretero MN (2002) J Mol Model 8:246–252

    Article  Google Scholar 

  9. Acuña-Cueva ER, Faure R, Jiménez-Pulido SB, Moreno-Carretero MN, Peña-Ruiz T (2004) J Mol Struct 697:65–71

    Article  Google Scholar 

  10. Pfleiderer W (1974) Comprehensive Heterocyclic Chemistry, vol. 3-2B. Pergamon, Oxford, p 309

    Google Scholar 

  11. Brown DJ (1988) In: Taylor EC (ed) Fused pyrimidines: pteridines, vol 24(3). Wiley, New York, pp 445–509

    Google Scholar 

  12. Sheldrick GM (2003) SADABS. University of Göttingen, Göttingen

    Google Scholar 

  13. Farrugia L (1999) J Appl Crystallogr 32:837–838

    Article  CAS  Google Scholar 

  14. Sheldrick GM (1997) SHELXL97. University of Göttingen, Göttingen

    Google Scholar 

  15. Spek AL (2003) J Appl Crystallogr 36:7–13

    Article  CAS  Google Scholar 

  16. Cambridge Crystallographic Data Centre MERCURY (2002).Cambridge, England

  17. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Menucci G, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo G, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewsky VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Ciolowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision E.01. Gaussian Inc, Wallingford, CT

    Google Scholar 

  18. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  19. Becke AD (1996) J Chem Phys 104:1040–1046

    Article  CAS  Google Scholar 

  20. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  21. Riley KE, Op’t Holt BT, Merz KM (2007) J Chem Theory Comput 3:407–433

    Article  CAS  Google Scholar 

  22. Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215–241

    Article  CAS  Google Scholar 

  23. Head-Gordon M, Pople JA, Frisch MJ (1988) Chem Phys Lett 153:503–506

    Article  CAS  Google Scholar 

  24. Ditchfield R, Hehre WJ, Pople JA (1971) J Chem Phys 54:720–723

    Article  Google Scholar 

  25. Clark T, Chandrasekhar J, Spitznagel GW, Schleyer PVR (1983) J Comput Chem 4:294–301

    Article  CAS  Google Scholar 

  26. Woon DE, Dunning TH (1993) J Chem Phys 98:1358–1371

    Article  CAS  Google Scholar 

  27. Kendall RA, Dunning TH, Harrison RJ (1992) J Chem Phys 96:6796–6806

    Article  CAS  Google Scholar 

  28. Peterson KA, Figgen D, Dolg M, Stoll H (2007) J Chem Phys 126:124101–124112

    Article  Google Scholar 

  29. Csaszar P, Pulay P (1984) J Mol Struct THEOCHEM 114:31–34

    CAS  Google Scholar 

  30. Farkas Ö, Schlegel HB (1999) J Chem Phys 111:10806–10814

    Article  CAS  Google Scholar 

  31. Simon S, Duran M, Dannenberg JJ (1996) J Chem Phys 105:11024–11031

    Article  CAS  Google Scholar 

  32. Boys SF, Bernardi F (1970) Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  33. Bader RF (1990) Atoms in molecules: a quantum theory. Oxford University Press, Oxford

    Google Scholar 

  34. Biegler-König F, Schönbohm J, Bayles D (2001) J Comput Chem 22:545–559

    Article  Google Scholar 

  35. Koch U, Popelier PLA (1995) J Phys Chem 99:9747–9754

    Article  CAS  Google Scholar 

  36. Allen FH, Watson DG, Brammer L, Orpen AG, Taylor R (2006) In: Prince E (ed) International Tables for Crystallography, vol C, ch 9.5. Springer, Heidelberg, pp 790–811

  37. Takechi H, Kubo K, Takahashi H, Matsumoto T (2007) Acta Crystallogr E 63:o701–o703

    Article  Google Scholar 

  38. Janik A, Olech A, Stasiewicz-Urban A, Stadnicka K (2009) Acta Crystallogr C 65:o70–o75

    Article  Google Scholar 

  39. Yang KB, Lin LR, Huang RB, Zheng LS (2006) Acta Crystallogr E 62:o1938–o1940

    Article  Google Scholar 

  40. Swaminathan S, Chacko KK (1978) Acta Crystallogr B 34:3108–3110

    Article  Google Scholar 

  41. Hueso-Ureña F, Jiménez-Pulido SB, Moreno-Carretero MN, Quirós-Olozábal M, Salas-Peregrín JM (1998) Polyhedron 18:85–91

    Article  Google Scholar 

  42. Janiak C (2000) J Chem Soc Dalton Trans 3885–3896

  43. Varadwaj PR, Marques HM (2010) Theor Chem Acc 127:711–725

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Thanks are due to “Plan de Apoyo a la Investigación, al Desarrollo Tecnológico y a la Innovación” of the University of Jaén (project RFC/PP2008/UJA-08-16-08) and Junta de Andalucía (FQM-273) for financial support. Also, the “Centro Informático Científico de Andalucía” (CICA) is acknowledged for computational facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel N. Moreno-Carretero.

Electronic supplementary material

CCDC-756140 contains the full crystal data for the reported XRD structure. These data can be obtained free of charge at the Cambridge Crystallographic Data Centre CCDC, 12 Union Road, Cambridge, CB2 1EZ, UK (fax: +44-1233-336-033; e-mail: deposit@ccdc.cam.ac.uk or http://www.ccdc.cam.ac.uk/conts/retrieving.html).

ESM 1

(TXT 11 kb)

ESM 2

(PDF 1630 kb)

ESM 3

(TXT 17 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Illán-Cabeza, N.A., Peña-Ruiz, T. & Moreno-Carretero, M.N. XRD and DFT-modelized structures of a pteridine-2,4(1H,3H)-dithione/N,N′-dimethylformamide H-bonded cluster (2:2). MO study of the coordination ability. J Mol Model 18, 815–824 (2012). https://doi.org/10.1007/s00894-011-1109-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-011-1109-1

Keywords

Navigation