Skip to main content

Advertisement

Log in

Extreme environments: a source of biosurfactants for biotechnological applications

  • Review
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

The surfactant industry moves billions of dollars a year and consists of chemically synthesized molecules usually derived from petroleum. Surfactant is a versatile molecule that is widely used in different industrial areas, with an emphasis on the petroleum, biomedical and detergent industries. Recently, interest in environmentally friendly surfactants that are resistant to extreme conditions has increased because of consumers' appeal for sustainable products and industrial processes that often require these characteristics. With this context, the need arises to search for surfactants produced by microorganisms coming from extreme environments and to mine their unique biotechnological potential. The production of biosurfactants is still incipient and presents challenges regarding economic viability due to the high costs of cultivation, production, recovery and purification. Advances can be made by exploring the extreme biosphere and bioinformatics tools. This review focuses on biosurfactants produced by microorganisms from different extreme environments, presenting a complete overview of what information is available in the literature, including the advances, challenges and future perspectives, as well as showing the possible applications of extreme biosurfactants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

adapted from Soberón-Chávez (2004)]; b sophorolipid structure and biosynthetic pathway [adapted from Van Bogaert et al. (2011)]; c trehalolipid structure and biosynthetic pathway [adapted from Lang and Philp (1998)]; d Surfactin and fengycin structure and biosynthetic pathway [adapted from Chen et al. (2009), Shaligram and Singhal (2010) and Mongkolthanaruk (2012)]

Fig. 2

Source: authors

Fig. 3

Source: authors

Similar content being viewed by others

References

  • Adrio JL, Demain AL (2014) Microbial enzymes: tools for biotechnological processes. Biomolecules 4:117–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aleti G, Sessitsch A, Brader G (2015) Genome mining: prediction of lipopeptides and polyketides from Bacillus and related Firmicutes. Comput Struct Biotechnol J 13:192–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Almeida DG, Soares Da Silva RCF, Luna JM (2016) Biosurfactants: promising molecules for petroleum biotechnology advances. Front Microbiol 7:1–14

    Google Scholar 

  • Arulazhagan P, Al-Shekri K, Huda Q, Godon JJ, Basahi JM, Jeyakumar D (2017) Biodegradation of polycyclic aromatic hydrocarbons by an acidophilic Stenotrophomonas maltophilia strain AJH1 isolated from a mineral mining site in Saudi Arabia. Extremophiles 21:163–174

    Article  CAS  PubMed  Google Scholar 

  • Assadi M, Tabatabaee MS (2010) Biosurfactants and their use in upgrading petroleum vacuum distillation residue: a review. Int J Environ Res 4:549–572

    Google Scholar 

  • Bachmann RT, Johnson AC, Edyvean RGJ (2014) Biotechnology in the petroleum industry: an overview. Int Biodeterior Biodegrad 86:225–237

    Article  CAS  Google Scholar 

  • Balan SS, Kumar CG, Jayalakshmi S (2017) Aneurinifactin, a new lipopeptide biosurfactant produced by a marine Aneurinibacillus aneurinilyticus SBP-11 isolated from Gulf of Mannar: purification, characterization and its biological evaluation. Microbiol Res 194:1–9

    Article  CAS  PubMed  Google Scholar 

  • Banat IM (1993) The isolation of a thermophilic biosurfactant producing Bacillus sp. Biotechnol Lett 15:591–594

    Article  CAS  Google Scholar 

  • Banat IM, Franzetti A, Gandolfi I, Bestetti G, Martinotti MG, Fracchia L, Marchant R (2010) Microbial biosurfactants production, applications and future potential. Appl Microbiol Biotechnol 87:427–444

    Article  CAS  PubMed  Google Scholar 

  • Banat IM, Satpute SK, Cameotra SS, Patil R, Nyayanit NV (2014) Cost effective technologies and renewable substrates for biosurfactants production. Front Microbiol 5:1–18

    Article  Google Scholar 

  • Basit M, Rasool MH, Naqvi SAR, Waseem M, Aslam B (2018) Biosurfactants production potential of native strains of Bacillus cereus and their antimicrobial, cytotoxic and antioxidant activities. Pak J Pharm Sci 31:251–256

    CAS  PubMed  Google Scholar 

  • Cai Q, Zhang B, Chen B, Zhu Z, Lin W, Cao T (2014) Screening of biosurfactant producers from petroleum hydrocarbon contaminated source. Mar Pollut Bull 86:402–410

    Article  CAS  PubMed  Google Scholar 

  • Camargo FP, Prado PF, Tonello PS, Santos ACA, Duarte ICS (2018) Bioleaching of toxic metals from sewage sludge by co-inoculation of Acidithiobacillus and the biosurfactant-producing yeast Meyerozyma guilliermondii. J Environ Manag 211:28–35

    Article  CAS  Google Scholar 

  • Cameotra SS, Makkar RS (1998) Synthesis of biosurfactants in extreme conditions. Appl Microbiol Biotechnol 50:520–529

    Article  CAS  PubMed  Google Scholar 

  • Chen XH, Koumoutsi A, Scholz R, Borriss R (2009) More than anticipated—production of antibiotics and other secondary metabolites by Bacillus amyloliquefaciens FZB42. J Mol Microbiol Biotechnol 16:14–24

    Article  CAS  PubMed  Google Scholar 

  • Christen P, Vega A, Casalot L, Simon G, Auria R (2012) Kinetics of aerobic phenol biodegradation by the acidophilic and hyperthermophilic archaeon Sulfolobus solfataricus 98/2. Biochem Eng J 62:56–61

    Article  CAS  Google Scholar 

  • Coker JA (2016) Extremophiles and biotechnology: current uses and prospects. F1000 Res 5:1–7

    Article  CAS  Google Scholar 

  • Coronel-León J, de Grau G, Grau-Campistany A, Farfan M, Rabanal F, Manresa A, Marqués AM (2015) Biosurfactant production by AL 1.1, a Bacillus licheniformis strain isolated from Antarctica: production, chemical characterization and properties. Ann Microbiol 65:2065–2078

    Article  CAS  Google Scholar 

  • Cortes-Sanchez AJ, Hernandez-Sanchez H, Jaramillo-Flores ME (2013) Biological activity of glycolipids produced by microorganisms: new trends and possible therapeutic alternatives. Microbiol Res 168:22–32

    Article  CAS  Google Scholar 

  • Couto CRA, Alvarez VM, Marques JM, Jurelevicius DA, Seldin L (2015) Exploiting the aerobic endospore-forming bacterial diversity in saline and hypersaline environments for biosurfactant production. BMC Microbiol 15:240

    Article  CAS  PubMed Central  Google Scholar 

  • Cowan DA, Makhalanyane TP, Dennis PG, Hopkins DW (2014) Microbial ecology and biogeochemistry of continental Antarctic soils. Front Microbiol 5:154

    Article  PubMed  PubMed Central  Google Scholar 

  • Cowan DA, Ramond JB, Makhalanyane TP, De Maayer P (2015) Metagenomics of extreme environments. Curr Opin Microbiol 25:97–102

    Article  CAS  PubMed  Google Scholar 

  • Daryasafar A, Jamialahmadi M, Moghaddam MB, Moslemi B (2016) Using biosurfactant producing bacteria isolated from an Iranian oil field for application in microbial enhanced oil recovery. Pet Sci Technol 34:739–746

    Article  CAS  Google Scholar 

  • Das N, Chandran P (2011) Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol Res Int 2011:1–13

    Google Scholar 

  • Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev 61:47–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dhanarajan G, Rangarajan V, Bandi C, Dixit A, Das S, Ale K, Sen R (2017) Biosurfactant-biopolymer driven microbial enhanced oil recovery (MEOR) and its optimization by an ANN-GA hybrid technique. J Biotechnol 256:46–56

    Article  CAS  PubMed  Google Scholar 

  • Djeridi I, Militon C, GrossiV CP (2013) Evidence for surfactant production by the haloarchaeon Haloferax sp. MSNC14 in hydrocarbon-containing media. Extremophiles 17:669–675

    Article  CAS  PubMed  Google Scholar 

  • Donio MBS, Ronica FA, Thanga Viji V, Velmurugan S, Adlin Jenifer J, Michaelbabu M, Dhar P, Citarasu T (2013) Halomonas sp. BS4, a biosurfactant producing halophilic bacterium isolated from solar salt works in India and their biomedical importance. Springer Plus 2:149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elazzazy AM, Abdelmoneim TS, Almaghrabi AO (2015) Isolation and characterization of biosurfactant production under extreme environmental conditions by alkali-halo-thermophilic bacteria from Saudi Arabia. Saudi J Biol Sci 22:466–475

    Article  CAS  PubMed  Google Scholar 

  • El-Sheshtawy HS, Aiad I, Osman ME, Abo-ELnasr AA, Kobisy AS (2015) Production of biosurfactant from Bacillus licheniformis for microbial enhanced oil recovery and inhibition the growth of sulphate reducing bacteria. Egypt J Pet 24:155–162

    Article  Google Scholar 

  • Fathepure BZ (2014) Recent studies in microbial degradation of petroleum hydrocarbons in hypersaline environments. Front Microbiol 5:173

    Article  PubMed  PubMed Central  Google Scholar 

  • Feller G (2013) Psychrophilic enzymes: from folding to function and biotechnology. Scientifica 512840:1–28

    Article  CAS  Google Scholar 

  • França IWL, Lima AP, Lemos JAM, Lemos CGF, Melo VMM, De Santana HB (2015) Production of a biosurfactant by Bacillus subtilis ICA56 aiming bioremediation of impacted soils. Catal Today 255:10–15

    Article  CAS  Google Scholar 

  • Gabor E, Liebeton K, Niehaus F, Eck J, Lorenz P (2007) Updating the metagenomics toolbox. Biotechnol J 2:201–206

    Article  CAS  PubMed  Google Scholar 

  • Gesheva V, Stackebrandt E, Vasileva-Tonkova E (2010) Biosurfactant production by halotolerant Rhodococcus fascians from Casey Station, Wilkes Land, Antarctica. Curr Microbiol 61:112–117

    Article  CAS  PubMed  Google Scholar 

  • Gomes MB, Gonzales-Limache EE, Sousa STP, Dellagnezze BM, Sartoratto A, Silva LCF, Gieg LM, Valoni E, Souza RS, Torres APR, Sousa MP, De Paula SO, Silva CC, Oliveira VM (2018) Exploring the potential of halophilic bacteria from oil terminal environments for biosurfactant production and hydrocarbon degradation under high-salinity conditions. Int Biodeterior Biodegrad 126:231–242

    Article  CAS  Google Scholar 

  • Grand View Research (2016) Biosurfactants Market by Product (Rhamnolipids, Sophorolipids, MES, APG, Sorbitan Esters, Sucrose Esters) Expected to Reach USD 2308.8 Million by 2020. http://www.grandviewresearch.com/industry-analysis/biosurfactants-industry. Accessed 5 Mar 2018

  • Grbavčić D, Bezbradica L, Izrael-Živković L et al (2011) Production of lipase and protease from an indigenous Pseudomonas aeruginosa strain and their evaluation as detergent additives: compatibility study with detergent ingredients and washing performance. Biores Technol 102:11226–11233

    Article  CAS  Google Scholar 

  • Gudiña EJ, Fernandes EC, Rodrigues AI, Teixeira JA, Rodrigues LR (2015) Biosurfactant production by Bacillus subtilis using corn steep liquor as culture medium. Front Microbiol 6:59

    PubMed  PubMed Central  Google Scholar 

  • Gudiña EJ, Teixeira JA, Rodrigues LR (2016) Biosurfactants produced by marine microorganisms with therapeutic applications. Mar Drugs 14:38

    Article  CAS  PubMed Central  Google Scholar 

  • Herbold CW, McDonald IR, Cary C (2014) Microbial ecology of geothermal habitats in Antarctica. In: Cowan DA (ed) Antarctic terrestrial microbiology: physical and biological properties of Antarctic soils. Springer, New York, pp 181–215

    Chapter  Google Scholar 

  • Horikoshi K (2011) Enzymes isolated from alkaliphiles. In: Horikoshi K, Antranikaian G, Bull AT, Robb FT, Stetter KO (eds) Extremophiles handbook. Springer, Tokyo, pp 164–177

    Chapter  Google Scholar 

  • Horikoshi K, Bull AT (2011) Prologue: definition, categories, distribution, origin and evolution, pioneering studies, and emerging fields of extremophiles. In: Horikoshi K, Antranikaian G, Bull AT, Robb FT, Stetter KO (eds) Extremophiles handbook. Springer, Tokyo, pp 4–15

  • Ivanova AE, Sokolovaa DS, Yu A (2016) Hydrocarbon biodegradation and surfactant productionby acidophilic mycobacteria. Microbiology 85:317–324

    Article  CAS  Google Scholar 

  • Jackson SA, Borchert E, O'Gara F, Dobson AD (2015) Metagenomics for the discovery of novel biosurfactants of environmental interest from marine eco-systems. Curr Opin Biotechnol 33:176–182

    Article  CAS  PubMed  Google Scholar 

  • Jadhav VV, Yadav A, Shouche YS, Aphale S, Moghe A, Pillai S, Arora A, Bhadekar RB (2013) Studies on biosurfactant from Oceanobacillus sp. BRI 10 isolated from Antarctic sea water. Desalination 318:64–71

    Article  CAS  Google Scholar 

  • Janek T, Łukaszewicz M, Rezanka T, Krasowska A (2010) Isolation and characterization of two new lipopeptide biosurfactants produced by Pseudomonas fluorescens BD5 isolated from water from the Arctic Archipelago of Svalbard. Bioresour Technol 101:6118–6123

    Article  CAS  PubMed  Google Scholar 

  • Janek T, Lukaszewicz M, Krasowska A (2013) Identification and characterization of bio-surfactants produced by the Arctic bacterium Pseudomonas putida BD2. Colloids Surf B Biointerfaces 110:379–386

    Article  CAS  PubMed  Google Scholar 

  • Jemil N, Ayed HB, Hmidet N, Nasri M (2016) Characterization and properties of biosurfactants produced by a newly isolated strain Bacillus methylotrophicus DCS1 and their applications in enhancing solubility of hydrocarbon. World J Microbiol Biotechnol 32:175

    Article  CAS  PubMed  Google Scholar 

  • Jesus HE, Peixoto RS, Cury JC, Van Elsas JD, Rosado AS (2015) Evaluation of soil bioremediation techniques in an aged diesel spill at the Antarctic Peninsula. Appl Microbiol Biotechnol 99:10815–10827

    Article  CAS  PubMed  Google Scholar 

  • Joshi J, Geetha SJ, Yadav S, Desai AJ (2013) Optimization of bench-scale production of biosurfactant by Bacillus licheniformis R2. APCBEE Proc 5:232–236

    Article  CAS  Google Scholar 

  • Joy S, Rahman PKS, Sharma S (2017) Biosurfactant production and concomitant hydrocarbon degradation potentials of bacteria isolated from extreme and hydrocarbon contaminated environments. Chem Eng J 317:232–241

    Article  CAS  Google Scholar 

  • Karwowska WA, Wojtkowska M, Andrzejewska D (2015) The influence of metal speciation in combustion waste on the efficiency of Cu, Pb, Zn, Cd, Ni and Cr bioleaching in a mixed culture of sulfur-oxidizing and biosurfactant-producing bacteria. J Hazard Mater 299:35–41

    Article  CAS  PubMed  Google Scholar 

  • Kebbouche-Gana S, Gana ML, Khemili S, Fazouane-Naimi F, Bouanane NA, Penninckx M, Hacene H (2009) Isolation and characterization of halophilic Archaea able to produce biosurfactant. J Ind Microbiol Biotechnol 36:727–738

    Article  CAS  PubMed  Google Scholar 

  • Kebbouche-Gana S, Gana ML, Ferrioune I, Khemili S, Lenchi N, Akmouci-Toumi S, Bouanane-Darenfed NA, Djelali ND (2013) Production of biosurfactant on crude date syrup under saline conditions by entrapped cells of Natrialba sp. strain E21, an extremely halophilic bacterium isolated from a solar saltern (Ain Salah, Algeria). Extremophiles 17:981–993

    Article  CAS  PubMed  Google Scholar 

  • Khan I, Kihara D (2014) Computational characterization of moonlighting proteins. Biochem Soc Trans 42:1780–1785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khemili-Talbi S, Kebbouche-Gana S, Akmoussi-Toumi S (2015) Isolation of an extremely halophilic arhaeon Natrialba sp. C21 able to degrade aromatic compounds and to produce stable biosurfactant at high salinity. Extremophiles 19:1109

    Article  CAS  PubMed  Google Scholar 

  • Kitamoto D, Ikegami T, Suzuki GT, Sasaki A, Takeyama Y, Idemoto Y, Koura N, Yanagishita H (2001) Microbial conversion of n-alkanes into glycolipid biosurfactants, mannosylerythritol lipids, by Pseudozyma (Candida antarctica). Biotechnol Lett 23:1709–1714

    Article  CAS  Google Scholar 

  • Konishi M, Nishi S, Fukuoka T, Kitamoto D, Watsuji TO, Nagano Y, Yabuki A, Nakagawa S, Hatada Y, Horiuchi J (2014) Deep-sea Rhodococcus sp. BS-15, lacking the phytopathogenic fas genes, produces a novel gluco-triose lipid biosurfactant. Mar Biotechnol 6:484–493

    Article  CAS  Google Scholar 

  • Krüger A, Scäfers C, Schöder C, Antranikian G (2018) Towards a sustainable biobased industry—highlighting the impact of extremophiles. New Biotechnol 40:144–153

    Article  CAS  Google Scholar 

  • Lang S, Philp JC (1998) Surface-active lipids in rhodococci. Antonie Van Leeuwenhoek 74:59–70

    Article  CAS  PubMed  Google Scholar 

  • Liu G, Zhong H, Jiang Y (2017) Effect of low concentration rhamnolipid biosurfactant on Pseudomonas aeruginosa transport in natural porous media. Water Resour Res 53:361–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Llamas I, Amjres H, Mata JA, Quesada E, Béjar V (2012) The potencial biotechnological applications of the exopolysaccharide produced by the halophilic bacterium Halomonas almeriensis. Molecules 17:7103–7120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez-Vazquez CM, Kubare M, Saroj DP, Chikamba C, Schwarz J, Daims H, Brdjanovic D (2014) Thermophilic biological nitrogen removal in industrial wastewater treatment. Appl Microbiol Biotechnol 98:945–956

    Article  CAS  PubMed  Google Scholar 

  • Lovaglio RB, Silva VL, Ferreira H, Hausmann R, Contiero J (2015) Rhamnolipids know-how: looking for strategies for its industrial dissemination. Biotechnol Adv 33:1715–1726

    Article  CAS  PubMed  Google Scholar 

  • Malavenda R, Rizzo C, Michaud L, Gerce B, Bruni V, Syldatk C, Hausmann R, Giudice AL (2015) Biosurfactant production by Arctic and Antarctic bacteria growing on hydrocarbons. Polar Biol 38:1565–1574

    Article  Google Scholar 

  • Marchant R, Banat IM (2012) Microbial biosurfactants: challenges and opportunities for future exploitation. Trends Biotechnol 11:558–565

    Article  CAS  Google Scholar 

  • Mongkolthanaruk W (2012) Classification of Bacillus beneficial substances related to plants, humans and animals. J Microbiol Biotechnol 22:1597–1604

    Article  CAS  PubMed  Google Scholar 

  • Morita T, Fukuoka T, Imura T, Kitamoto D (2013) Production of mannosylerythritol lipids and their application in cosmetics. Appl Microbiol Biotechnol 97:4691–4700

    Article  CAS  PubMed  Google Scholar 

  • Najmi Z, Ebrahimipour G, Franzetti A, Banat IM (2018) In situ downstream strategies for cost-effective bio/surfactant recovery. Biotechnol Appl Biochem 65:523–532

    Article  CAS  PubMed  Google Scholar 

  • Nercessian D, Di Meglio L, De Castro R, Paggi R (2015) Exploring the multiple biotechnological potential of halophilic microorganisms isolated from two Argentinean salterns. Extremophiles 19:1133–1143

    Article  CAS  PubMed  Google Scholar 

  • Nitschke M, Pastore GM (2002) Biossurfactantes: Propriedades e aplicações. Quim. Nova 25:772–776

    Article  CAS  Google Scholar 

  • Oliveira JS, Araújo W, Sales AIL, Guerra AB, Araújo SCS, Vasconcelos ATR, Agnez-Lima LF, Freitas AT (2015) BioSurfDB: knowledge and algorithms to support biosurfactants and biodegradation studies. Database 2015:bav03

    Article  CAS  Google Scholar 

  • Pacwa-Płociniczak M, Płaza GA, Piotrowska-Seget Z, Cameotra SS (2011) Environmental applications of biosurfactants: recent advances. Int J Mol Sci 12:633–654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pepi M, Cesàro A, Luit G, Baldi F (2005) An Antarctic psychrotrophic bacterium Halomonas sp. ANT-3b, growing on n-hexadecane, produces a new emulsifying glycolipid. FEMS Microbiol Ecol 53:157–166

    Article  PubMed  Google Scholar 

  • Perfumo A, Banat IM, Marchant R (2018) Going green and cold: biosurfactants from low-temperature environments to biotechnology applications. Trends Biotechnol 36:277–289

    Article  CAS  PubMed  Google Scholar 

  • Plaza GA, Zjawiony I, Banat IM (2006) Use of different methods for detection of thermophilic biosurfactant producing bacteria from hydrocarbon-contaminated and bioremediated soils. J Pet Sci Eng 50:71–77

    Article  CAS  Google Scholar 

  • Ramos-Barbero MD, Martin-Cuadrado AB, Viver T, Santos F, Martinez-Garcia M, Antón J (2019) Recovering microbial genomes from metagenomes in hypersaline environments: the good, the bad and the ugly. Syst App Microbiol 42:30–40

    Article  CAS  Google Scholar 

  • Rampelotto PH (2013) Extremophiles and extreme environment. Life Open Access J 3:482–485

    Google Scholar 

  • Rezanka T, Siristova L, Sigler K (2011) Rhamnolipid-producing thermophilic bacteria of species Thermus and Meiothermus. Extremophiles 15:697–709

    Article  CAS  PubMed  Google Scholar 

  • Roongsawang N, Thaniyavarn J, Thaniyavarn S, Kameyama T, Haruki M, Imanaka T, Morikawa M, Kanaya S (2002) Isolation and characterization of a halotolerant Bacillus subtilis BBK-1 which produces three kinds of lipopeptides: bacillomycin L, plipastatin, and surfactin. Extremophiles 6:499–506

    Article  CAS  PubMed  Google Scholar 

  • Rothschild LJ, Mancinelli RL (2001) Life in extreme environments. Nature 409:1092–1101

    Article  CAS  PubMed  Google Scholar 

  • Sachdev DP, Cameotra SS (2013) Biosurfactants in agriculture. Appl Microbiol Biotechnol 97:1005–1016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sangwan N, Xia F, Gilbert JA (2016) Recovering complete and draft population genomes from metagenome datasets. Microbiome 4:8

    Article  PubMed  PubMed Central  Google Scholar 

  • Sarafin Y, Donio MBS, Velmurugan S, Michaelbabu M, Citarasu T (2014) Kocuria marina BS-15 a biosurfactant producing halophilic bacteria isolated from solar salt works in India. Saudi J Biol Sci 21:511–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shaligram NS, Singhal RS (2010) Surfactin—a review. Food Technol Biotechnol 48:119–134

    CAS  Google Scholar 

  • Sharafi H, Abdoli M, Hajfarajollah H, Samie N, Alidoust L, Abbasi H, Noghabi KA (2014) First report of a lipopeptide biosurfactant from thermophilic bacterium Aneurinibacillus thermoaerophilus MK01 newly isolated from municipal landfill site. Appl Biochem Biotechnol 173:1236–1249

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Parashar D, Satyanarayan T (2016) Acidophilic microbes: biology and applications. In: Rampelotto PH (ed) Biotechnology of extremophiles: advances and challenges (grand challenges in biology and biotechnology). Springer, New York, pp 215–242

    Chapter  Google Scholar 

  • Shibulal B, Al-Bahry SN, Al-Wahaibi YM, Elshafie AE, Al-Bemani AS, Joshi SJ (2017) The potential of indigenous Paenibacillus ehimensis BS1 for recovering heavy crude oil by biotransformation to light fractions. PLoS ONE 12:e0171432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silva FS, Pylro VS, Fernandes PL, Barcelos GS, Kalks KH, Schaefer CE, Tótola MR (2015) Unexplored Brazilian oceanic island host high salt tolerant biosurfactant-producing bacterial strains. Extremophiles 19:561–572

    Article  CAS  PubMed  Google Scholar 

  • Soberón-Chávez G (2004) Biosynthesis of rhamnolipids. In: Ramos JL (ed) Pseudomonas. Kluwer Academic/Plenum Publishers, New York, pp 173–189

    Chapter  Google Scholar 

  • Sobrinho HB, Luna JM, Rufino RD, Porto ALF, Sarubbo LA (2013) Biosurfactants: classification properties and environmental applications. In: Govil N (ed) Recent developments in biotechnology. Studium Press LLC, Houston, pp 1–29

    Google Scholar 

  • Stan-Latter H (2012) Physico-chemical boundaries of life. In: Stan-Latter H, Fendrihan S (eds) Adaptation of microbial life to environmental extremes. Springer, New York, pp 1–14

    Chapter  Google Scholar 

  • Straub CT, Zeldes BM, Schut GJ, Adams MWW, Kelly RM (2017) Extremely thermophilic energy metabolisms: biotechnological prospects. Curr Opin Biotechnol 45:104–112

    Article  CAS  PubMed  Google Scholar 

  • Tabatabaee A, Mazaheri-Assadi M, Noohi AA, Sajadian VA (2005) Isolation of biosurfactant producing bacteria from oil reservoirs. Iran J Environ Health Sci Eng 2:6–12

    Google Scholar 

  • Thies S, Rausch SC, Kovacic F et al (2016) Metagenomic discovery of novel enzymes and biosurfactants in a slaughterhouse biofilm microbial community. Sci Rep 6:1–12

    Article  CAS  Google Scholar 

  • Tyson GW et al (2004) Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428:37–43

    Article  CAS  PubMed  Google Scholar 

  • Van Bogaert INA, Zhang J, Soetaert W (2011) Microbial synthesis of sophorolipids. Process Biochem 46:821–833

    Article  CAS  Google Scholar 

  • Varjani SJ, Upasani VN (2017) Critical review on biosurfactant analysis, purification and characterization using rhamnolipid as a model biosurfactant. Biores Technol 232:389–397

    Article  CAS  Google Scholar 

  • Vasileva-Tonkova E, Gesheva V (2004) Potential for biodegradation of hydrocarbons by microorganisms isolated from Antarctic soils. Z Naturforsch C 59:140–145

    Article  CAS  PubMed  Google Scholar 

  • Vijayakumar S, Saravanan V (2015) Biosurfactants-types, sources and applications. Res J Microbiol 10:181–192

    Article  CAS  Google Scholar 

  • Vollú RE, Jurelevicius D, Ramos LR, Peixoto RS, Rosado AS, Seldin L (2014) Aerobic endospore-forming bacteria isolated from Antarctic soils as producers of bioactive compounds of industrial interest. Polar Biol 37:1121–1131

    Article  Google Scholar 

  • Winterburn JB, Martin PJ (2012) Foam mitigation and exploitation in biosurfactant production. Biotechnol Lett 34:187–195

    Article  CAS  PubMed  Google Scholar 

  • Yakimov MM, Amro MM, Bock M, Boseker K, Fredrickson HL, Kessel DG, Timmis KN (1997) The potential of Bacillus licheniformis strains for in situ enhanced oil recovery. J Pet Sci Eng 18:147–160

    Article  CAS  Google Scholar 

  • Yakimov MM, Abraham WR, Meyer H, Giuliano L, Golyshin PN (1999) Structural characterization of lichenysin A components by fast atom bombardment tandem mass spectrometry. Biochim Biophys Acta 1438:273–280

    Article  CAS  PubMed  Google Scholar 

  • Yakimov MM, Giuliano L, Denaro R, Crisafi E, Chernikova TN, Abraham WR (2004) Thalassolituus oleivorans gen. nov., sp. nov., a novel marine bacterium that obligately utilizes hydrocarbons. Int J Syst Evol Microbiol 54:141–148

    Article  CAS  PubMed  Google Scholar 

  • Yu H, Xiao H, Wang D (2014) Effects of soil properties and biosurfactant on the behavior of PAHs in soil–water systems. Environ Syst Res 3:6

    Article  Google Scholar 

  • Zarinviarsagh M, Ebrahimipour G, Sadeghi H (2017) Lipase and biosurfactant from Ochrobactrum intermedium strain MZV101 isolated by washing powder for detergent application. Lipids Health Dis 16:177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Xue Q, Gao H, Lai H, Wang P (2016) Production of lipopeptide biosurfactants by Bacillus atrophaeus 5–2a and their potential use in microbial enhanced oil recovery. Microb Cell Fact 5:168

    Article  CAS  Google Scholar 

  • Zhong H, Liu G, Jiang Y, Brusseau ML, Liu Z, Liu Y, Zeng G (2016) Effect of low concentration rhamnolipid on transport of Pseudomonas aeruginosa ATCC 9027 in an ideal porous medium with hydrophilic or hydrophobic surfaces. Colloids Surf B 139:244–248

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the National Council for Scientific and Technological Development (CNPq), the National Council for the Improvement of Higher Education (CAPES) and the Carlos Chagas Filho Foundation for Research Support of Rio de Janeiro State (FAPERJ) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Soares Rosado.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by S. Albers.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schultz, J., Rosado, A.S. Extreme environments: a source of biosurfactants for biotechnological applications. Extremophiles 24, 189–206 (2020). https://doi.org/10.1007/s00792-019-01151-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-019-01151-2

Keywords

Navigation