Skip to main content

Advertisement

Log in

Thermostable marine microbial proteases for industrial applications: scopes and risks

  • Review
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Thermostable proteases are important in biotechnological and industrial sectors, due to their stability against denaturing agents and chemicals. The feature that gives them such unique applicability is their reaction at high temperatures, which affords a high concentration of substrate, and less risk of microbial contamination. Nearly 65% of industrial proteases are isolated from marine microbial source, and they can significantly resist a wide range of organic solvents at high temperatures. The most important trait of marine organisms is their adaptability, which allows them to grow optimally in harsh environments such as high salt, temperatures, and pressure—the characteristics of deep-sea hot springs and geothermal sediments. However, proteases are immunogenic, and they can trigger inflammatory conditions in human; so their safety assessment prior to industrial usage is of paramount importance. This review focusses on marine-origin thermophilic proteases, their thermal resistance, scopes of their industrial applications, and risks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abebe B, Abrham S, Genet A, Hiwot G, Paulos K, Melese A (2014) Isolation, optimization and characterization of protease producing bacteria from soil and water in Gondar town, North West Ethiopia. IJBVI 1:20–24

    Google Scholar 

  • Abou-Elela GM, Ibrahim HA, Hassan SW, Abd-Elnaby H, El-Toukhy NM (2011) Alkaline protease production by alkaliphilic marine bacteria isolated from Marsa-Matrouh (Egypt) with special emphasis on Bacillus cereus purified protease. Afr J Biotechnol 10:4631–4642

    CAS  Google Scholar 

  • Alain K, Pignet P, Zbinden M, Quillevere M, Duchiron F, Donval J-P, Lesongeur F, Raguenes G, Crassous P, Querellou J (2002) Caminicella sporogenes gen. nov., sp. nov., a novel thermophilic spore-forming bacterium isolated from an East-Pacific Rise hydrothermal vent. Int J Syst Evol Microbiol 52:1621–1628

    CAS  PubMed  Google Scholar 

  • Alain K, Postec A, Grinsard E, Lesongeur F, Prieur D, Godfroy A (2010) Thermodesulfatator atlanticus sp. nov., a thermophilic, chemolithoautotrophic, sulfate-reducing bacterium isolated from a Mid-Atlantic Ridge hydrothermal vent. Int J Syst Evol Microbiol 60:33–38

    Article  CAS  PubMed  Google Scholar 

  • Ali I, Akbar A, Anwar M, Yanwisetpakdee B, Prasongsuk S, Lotrakul P, Punnapayak H (2014) Purification and characterization of extracellular, polyextremophilic α-amylase obtained from halophilic Engyodontium album. Iran J Biotechnol 12:35–40

    Article  Google Scholar 

  • Andrä S, Frey G, Jaenicke R, Stetter KO (1998) The thermosome from Methanopyrus kandleri possesses an NH. es+. rb. ei4. rb-dependent ATPase activity. Eur J Biochem 255:93–99

    Article  PubMed  Google Scholar 

  • Annamalai N, Rajeswari MV, Thavasi R, Vijayalakshmi S, Balasubramanian T (2013) Optimization, purification and characterization of novel thermostable, haloalkaline, solvent stable protease from Bacillus halodurans CAS6 using marine shellfish wastes: a potential additive for detergent and antioxidant synthesis. Bioprocess Biosyst Eng 36:873–883

    Article  CAS  PubMed  Google Scholar 

  • Annamalai N, Rajeswari MV, Balasubramanian T (2014) Extraction, purification and application of thermostable and halostable alkaline protease from Bacillus alveayuensis CAS 5 using marine wastes. Food Bioprod Process 92:335–342

    Article  CAS  Google Scholar 

  • Antoine E, Cilia V, Meunier J, Guezennec J, Lesongeur F, Barbier G (1997) Thermosipho melanesiensis sp. nov., a new thermophilic anaerobic bacterium belonging to the order Thermotogales, isolated from deep-sea hydrothermal vents in the southwestern Pacific Ocean. Int J Syst Evol Microbiol 47:1118–1123

    CAS  Google Scholar 

  • Antranikian G, Rüdiger A, Canganella F, Klingeberg M, Sunna A (1995) Biodegradation of polymers at temperatures up to 130 °C. J Macromol Sci Part A Pure Appl Chem 32:661–669

    Article  Google Scholar 

  • Anwar A, Saleemuddin M (1998) Alkaline proteases: a review. Biores Technol 64:175–183

    Article  CAS  Google Scholar 

  • Banerjee UC, Sani RK, Azmi W, Soni R (1999) Thermostable alkaline protease from Bacillus brevis and its characterization as a laundry detergent additive. Process Biochem 35:213–219

    Article  CAS  Google Scholar 

  • Barrett AJ, Woessner JF, Rawlings ND (2012) Handbook of proteolytic enzymes. Elsevier, Amsterdam

    Google Scholar 

  • Beg QK, Sahai V, Gupta R (2003) Statistical media optimization and alkaline protease production from Bacillus mojavensis in a bioreactor. Process Biochem 39:203–209

    Article  CAS  Google Scholar 

  • Beygmoradi A, Homaei A (2017) Marine microbes as a valuable resource for brand new industrial biocatalysts. Biocatal Agric Biotechnol 11:131–152

    Google Scholar 

  • Birrien J-L, Zeng X, Jebbar M, Cambon-Bonavita M-A, Quérellou J, Oger P, Bienvenu N, Xiao X, Prieur D (2011) Pyrococcus yayanosii sp. nov., an obligate piezophilic hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 61:2827–2881

    Article  CAS  PubMed  Google Scholar 

  • Blochl E (1997) Pyrolobus fumarii, gen. and sp. nov., represents and novel group of archaea, extending the upper temperature limit for life to 113 C. Extremophiles 1:14–21

    Article  CAS  PubMed  Google Scholar 

  • Bruins ME, Janssen AE, Boom RM (2001) Thermozymes and their applications. Appl Biochem Biotechnol 90:155–186

    Article  CAS  PubMed  Google Scholar 

  • Burggraf S, Jannasch HW, Nicolaus B, Stetter KO (1990) Archaeoglobus profundus sp. nov., represents a new species within the sulfate-reducing archaebacteria. Syst Appl Microbiol 13:24–28

    Article  Google Scholar 

  • Canganella F, Jones WJ, Gambacorta A, Antranikian G (1997) Biochemical and phylogenetic characterization of two novel deep-sea Thermococcus isolates with potentially biotechnological applications. Arch Microbiol 167:233–238

    Article  CAS  PubMed  Google Scholar 

  • Chandrasekaran M, Rajeev Kumar S (2010) Marine microbial enzymes. Biotechnology 9:1–15

    Article  Google Scholar 

  • Chellappan S, Jasmin C, Basheer SM, Elyas K, Bhat SG, Chandrasekaran M (2006) Production, purification and partial characterization of a novel protease from marine Engyodontium album BTMFS10 under solid state fermentation. Process Biochem 41:956–961

    Article  CAS  Google Scholar 

  • Chellappan S, Jasmin C, Basheer SM, Kishore A, Elyas K, Bhat SG, Chandrasekaran M (2011) Characterization of an extracellular alkaline serine protease from marine Engyodontium album BTMFS10. J Ind Microbiol Biotechnol 38:743–752

    Article  CAS  PubMed  Google Scholar 

  • Christie DM, Fisher CR, Lee S-M, Givens S (2006) Back-arc spreading systems: geological, biological, chemical, and physical interactions. American Geophysical Union Geophysical Monograph Series, Washington DC, p 166

    Book  Google Scholar 

  • Cowan D (1997) Thermophilic proteins: stability and function in aqueous and organic solvents. Comp Biochem Physiol A Physiol 118:429–438

    Article  CAS  PubMed  Google Scholar 

  • Cowan DA, Daniel RM (1982) The properties of immobilized caldolysin, a thermostable protease from an extreme thermophile. Biotechnol Bioeng 24:2053–2061

    Article  CAS  PubMed  Google Scholar 

  • Cowan D, Daniel R, Morgan H (1985) Thermophilic proteases: properties and potential applications. Trends Biotechnol 3:68–72

    Article  CAS  Google Scholar 

  • Cui H, Wang L, Yu Y (2015) Production and characterization of alkaline protease from a high yielding and moderately halophilic strain of SD11 marine bacteria. J Chem 2015:1–8

    Article  CAS  Google Scholar 

  • Dadshahi Z, Homaei A, Zeinali F, Sajedi RH, Khajeh K (2016) Extraction and purification of a highly thermostable alkaline caseinolytic protease from wastes Litopenaeus vannamei suitable for food and detergent industries. Food Chem 202:110–115

    Article  CAS  PubMed  Google Scholar 

  • Dalmaso GZL, Ferreira D, Vermelho AB (2015) Marine extremophiles: a source of hydrolases for biotechnological applications. Mar Drugs 13:1925–1965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Macario EC, Macario AJ (2000) Stressors, stress and survival; overview. Front Biosci 5:d780–d786

    Article  PubMed  Google Scholar 

  • De Martin L, Ebert C, Gardossi L, Linda P (2001) High isolated yields in thermolysin-catalysed synthesis of Z-l-aspartyl-l-phenylalanine methyl ester in toluene at controlled water activity. Tetrahedron Lett 42:3395–3397

    Article  Google Scholar 

  • Debashish G, Malay S, Barindra S, Joydeep M (2005) Marine enzymes. Adv Biochem Eng Biotechnol 96:189–218

    CAS  PubMed  Google Scholar 

  • Eggers DK, Valentine JS (2001) Molecular confinement influences protein structure and enhances thermal protein stability. Protein Sci 10:250–261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eichler J (2001) Biotechnological uses of archaeal extremozymes. Biotechnol Adv 19:261–278

    Article  CAS  PubMed  Google Scholar 

  • Elibol M, Moreira AR (2003) Production of extracellular alkaline protease by immobilization of the marine bacterium Teredinobacter turnirae. Process Biochem 38:1445–1450

    Article  CAS  Google Scholar 

  • Emi S, Myers DV, Iacobucci GA (1976) Purification and properties of the thermostable acid protease of Penicillium duponti. Biochemistry 15:842–848

    Article  CAS  PubMed  Google Scholar 

  • Erauso G, Reysenbach A-L, Godfroy A, Meunier J-R, Crump B, Partensky F, Baross JA, Marteinsson V, Barbier G, Pace NR (1993) Pyrococcus abyssi sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Arch Microbiol 160:338–349

    Article  CAS  Google Scholar 

  • Fiala G, Stetter KO (1986) Pyrococcus furiosus sp. nov. represents a novel genus of marine heterotrophic archaebacteria growing optimally at 100 C. Arch Microbiol 145:56–61

    Article  CAS  Google Scholar 

  • Frappier V, Najmanovich R (2015) Vibrational entropy differences between mesophile and thermophile proteins and their use in protein engineering. Protein Sci 24:474–483

    Article  CAS  PubMed  Google Scholar 

  • Fujiwara S (2002) Extremophiles: developments of their special functions and potential resources. J Biosci Bioeng 94:518–525

    Article  CAS  PubMed  Google Scholar 

  • Fulzele R, DeSa E, Yadav A, Shouche Y, Bhadekar R (2011) Characterization of novel extracellular protease produced by marine bacterial isolate from the Indian Ocean. Braz J Microbiol 42:1364–1373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gey M, Unger K (1995) Calculation of the molecular masses of two newly synthesized thermostable enzymes isolated from thermophilic microorganisms. J Chromatogr B Biomed Sci Appl 666:188–193

    Article  CAS  Google Scholar 

  • Giddings L-A, Newman DJ (2015) Bioactive compounds from terrestrial extremophiles In: Bioactive compounds from terrestrial extremophiles. Springer, pp 1–75

  • Glass JD (1981) Enzymes as reagents in the synthesis of peptides. Enzyme Microb Technol 3:2–8

    Article  CAS  Google Scholar 

  • Godfroy A, Lesongeur F, Raguénès G, Quérellou J, Antoine E, Meunier J-R, Guezennec J, Barbier G (1997) Thermococcus hydrothermalis sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 47:622–626

    CAS  Google Scholar 

  • Goodenough PW, Jenkins JA (1991) Protein engineering to change thermal stability for food enzymes. Biochem Soc Trans 19:655–662

    Article  CAS  PubMed  Google Scholar 

  • Grazú V, Abian O, Mateo C, Batista-Viera F, Fernández-Lafuente R, Guisán JM (2005) Stabilization of enzymes by multipoint immobilization of thiolated proteins on new epoxy-thiol supports. Biotechnol Bioeng 90:597–605

    Article  PubMed  CAS  Google Scholar 

  • Gupta R, Ramnani P (2006) Microbial keratinases and their prospective applications: an overview. Appl Microbiol Biotechnol 70:21–33

    Article  CAS  PubMed  Google Scholar 

  • Gupta R, Beg Q, Lorenz P (2002) Bacterial alkaline proteases: molecular approaches and industrial applications. Appl Microbiol Biotechnol 59:15–32

    Article  CAS  PubMed  Google Scholar 

  • Haddar A, Fakhfakh-Zouari N, Hmidet N, Frikha F, Nasri M, Kamoun AS (2010) Low-cost fermentation medium for alkaline protease production by Bacillus mojavensis A21 using hulled grain of wheat and sardinella peptone. J Biosci Bioeng 110:288–294

    Article  CAS  PubMed  Google Scholar 

  • Haki G, Rakshit S (2003) Developments in industrially important thermostable enzymes: a review. Biores Technol 89:17–34

    Article  CAS  Google Scholar 

  • Hanzawa S, Hoaki T, Jannasch HW, Maruyama T (1996) An extremely thermostable serine protease from a hyperthermophilic archaeum, Desulfurococcus strain SY, isolated from a deep-sea hydrothermal vent. J Mar Biotechnol 4:121–126

    CAS  Google Scholar 

  • Hartley B (1960) Proteolytic enzymes. Annu Rev Biochem 29:45–72

    Article  CAS  PubMed  Google Scholar 

  • Harzevili FD (2014) Yarrowia lipolytica in biotechnological applications. In: Biotechnological applications of the yeast Yarrowia lipolytica. Springer, pp 17–74

  • Hasan F, Shah AA, Javed S, Hameed A (2010) Enzymes used in detergents: lipases. Afr J Biotechnol 9:4836–4844

    CAS  Google Scholar 

  • Herbert R, Sharp R (1992) Molecular biology and biotechnology of extremophiles. Blackie & Son Ltd, London

    Book  Google Scholar 

  • Homaei A (2015a) Enhanced activity and stability of papain immobilized on CNBr-activated sepharose. Int J Biol Macromol 75:373–377

    Article  CAS  PubMed  Google Scholar 

  • Homaei A (2015b) Enzyme Immobilization and its application in the food industry. In: Advances in food biotechnology, p 145

  • Homaei A (2015c) Purification and biochemical properties of highly efficient alkaline phosphatase from Fenneropenaeus merguiensis brain. J Mol Catal B Enzym 118:16–22

    Article  CAS  Google Scholar 

  • Homaei A, Etemadipour R (2015) Improving the activity and stability of actinidin by immobilization on gold nanorods. Int J Biol Macromol 72:1176–1181

    Article  CAS  PubMed  Google Scholar 

  • Homaei AA, Sajedi RH, Sariri R, Seyfzadeh S, Stevanato R (2010) Cysteine enhances activity and stability of immobilized papain. Amino Acids 38:937–942

    Article  CAS  PubMed  Google Scholar 

  • Homaei A, Barkheh H, Sariri R, Stevanato R (2014) Immobilized papain on gold nanorods as heterogeneous biocatalysts. Amino Acids 46:1649–1657

    Article  CAS  PubMed  Google Scholar 

  • Homaei A, Ghanbarzadeh M, Monsef F (2016a) Biochemical features and kinetic properties of α-amylases from marine organisms. Int J Biol Macromol 83:306–314

    Article  CAS  PubMed  Google Scholar 

  • Homaei A, Lavajoo F, Sariri R (2016b) Development of marine biotechnology as a resource for novel proteases and their role in modern biotechnology. Int J Biol Macromol 88:542–552

    Article  CAS  PubMed  Google Scholar 

  • Huber R, Woese C, Langworthy TA, Fricke H, Stetter KO (1989) Thermosipho africanus gen. nov., represents a new genus of thermophilic eubacteria within the “Thermotogales”. Syst Appl Microbiol 12:32–37

    Article  Google Scholar 

  • Huber H, Hohn MJ, Rachel R, Fuchs T, Wimmer VC, Stetter KO (2002) A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont. Nature 417:63–67

    Article  CAS  PubMed  Google Scholar 

  • Inácio FD, Ferreira RO, Araujo CAVd, Brugnari T, Castoldi R, Peralta RM, Souza CGMd (2015) Proteases of wood rot fungi with emphasis on the genus Pleurotus. BioMed Res Int 2015. https://doi.org/10.1155/2015/290161

  • Jackson E, Young L (2001) Ecology and industrial microbiology: learning and earning from diversity. Curr Opin Microbiol 4:281–285

    Article  Google Scholar 

  • Jasmin C, Chellappan S, Sukumaran RK, Elyas K, Bhat SG, Chandrasekaran M (2010) Molecular cloning and homology modelling of a subtilisin-like serine protease from the marine fungus, Engyodontium album BTMFS10. World J Microbiol Biotechnol 26:1269–1279

    Article  CAS  PubMed  Google Scholar 

  • Jolivet E, L’Haridon S, Corre E, Forterre P, Prieur D (2003) Thermococcus gammatolerans sp. nov., a hyperthermophilic archaeon from a deep-sea hydrothermal vent that resists ionizing radiation. Int J Syst Evol Microbiol 53:847–851

    Article  CAS  PubMed  Google Scholar 

  • Jones W, Leigh JA, Mayer F, Woese C, Wolfe R (1983) Methanococcus jannaschii sp. nov., an extremely thermophilic methanogen from a submarine hydrothermal vent. Arch Microbiol 136:254–261

    Article  CAS  Google Scholar 

  • Kashefi K, Lovley DR (2003) Extending the upper temperature limit for life. Science 301:934

    Article  CAS  PubMed  Google Scholar 

  • Khoo TC, Cowan DA, Daniel R, Morgan HW (1984) Interactions of calcium and other metal ions with caldolysin, the thermostable proteinase from Thermus aquaticus strain T351. Biochem J 221:407–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim S-K (2013) Marine microbiology: bioactive compounds and biotechnological applications. Wiley, New York

    Book  Google Scholar 

  • Kim S-K (2015) Springer handbook of marine biotechnology. Springer, Cham

    Book  Google Scholar 

  • Kobayashi T, Kwak YS, Akiba T, Kudo T, Horikoshi K (1994) Thermococcus profundus sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Syst Appl Microbiol 17:232–236

    Article  CAS  Google Scholar 

  • Kumakura M, Kaetsu I, Kobayashi T (1984) Properties of thermolysin immobilized in polymer matrix by radiation polymerization. Enzyme Microb Technol 6:23–26

    Article  CAS  Google Scholar 

  • Kumar HD (2001) Modern concepts of microbiology. Vikas Publishing House Pvt Ltd, New Delhi

    Google Scholar 

  • Kumar C, Tiwari M, Jany K (1999) Novel alkaline serine proteases from alkalophilic Bacillus spp.: purification and some properties. Process Biochem 34:441–449

    Article  CAS  Google Scholar 

  • Kumar S, Tsai C-J, Nussinov R (2000) Factors enhancing protein thermostability. Protein Eng 13:179–191

    Article  CAS  PubMed  Google Scholar 

  • Kumar CG, Joo H-S, Koo Y-M, Paik SR, Chang C-S (2004) Thermostable alkaline protease from a novel marine haloalkalophilic Bacillus clausii isolate. World J Microbiol Biotechnol 20:351–357

    Article  CAS  Google Scholar 

  • Kurr M, Huber R, König H, Jannasch HW, Fricke H, Trincone A, Kristjansson JK, Stetter KO (1991) Methanopyrus kandleri, gen. and sp. nov. represents a novel group of hyperthermophilic methanogens, growing at 110 C. Arch Microbiol 156:239–247

    Article  CAS  Google Scholar 

  • Kuwabara T, Minaba M, Iwayama Y, Inouye I, Nakashima M, Marumo K, Maruyama A, Sugai A, Itoh T, J-i Ishibashi (2005) Thermococcus coalescens sp. nov., a cell-fusing hyperthermophilic archaeon from Suiyo Seamount. Int J Syst Evol Microbiol 55:2507–2514

    Article  CAS  PubMed  Google Scholar 

  • Kuwabara T, Kawasaki A, Uda I, Sugai A (2011) Thermosipho globiformans sp. nov., an anaerobic thermophilic bacterium that transforms into multicellular spheroids with a defect in peptidoglycan formation. Int J Syst Evol Microbiol 61:1622–1627

    Article  CAS  PubMed  Google Scholar 

  • L’haridon S, Cilia V, Messner P, Raguenes G, Gambacorta A, Sleytr U, Prieur D, Jeanthon C (1998) Desulfurobacterium thermolithotrophum gen. nov., sp. nov., a novel autotrophic, sulphur-reducing bacterium isolated from a deep-sea hydrothermal vent. Int J Syst Evolut Microbiol 48:701–711

    Google Scholar 

  • Ladero M, Ruiz G, Pessela B, Vian A, Santos A, Garcia-Ochoa F (2006) Thermal and pH inactivation of an immobilized thermostable β-galactosidase from Thermus sp. strain T2: comparison to the free enzyme. Biochem Eng J 31:14–24

    Article  CAS  Google Scholar 

  • Lasa I, Berenguer J (1993) Thermophilic enzymes and their biotechnological potential. Microbiologia 9:77–89

    CAS  PubMed  Google Scholar 

  • Lee C-H, Lang J, Yen C-W, Shih P-C, Lin T-S, Mou C-Y (2005) Enhancing stability and oxidation activity of cytochrome c by immobilization in the nanochannels of mesoporous aluminosilicates. J Phys Chem B 109:12277–12286

    Article  CAS  PubMed  Google Scholar 

  • López-García P (1999) DNA supercoiling and temperature adaptation: a clue to early diversification of life? J Mol Evol 49:439–452

    Article  PubMed  Google Scholar 

  • Mane M, Mahadik K, Kokare C (2013) Purification, characterization and applications of thermostable alkaline protease from marine Streptomyces sp. D1. Int J Pharm Bio Sci 4:572–582

    CAS  Google Scholar 

  • Marrs B, Delagrave S, Murphy D (1999) Novel approaches for discovering industrial enzymes. Curr Opin Microbiol 2:241–245

    Article  CAS  PubMed  Google Scholar 

  • Marteinsson VT (1999) Isolation and characterization of Thermus thermophilus Gy1211 from a deep-sea hydrothermal vent. Extremophiles 3:247–251

    Article  CAS  PubMed  Google Scholar 

  • Maruthiah T, Somanath B, Immanuel G, Palavesam A (2015) Deproteinization potential and antioxidant property of haloalkalophilic organic solvent tolerant protease from marine Bacillus sp. APCMST-RS3 using marine shell wastes. Biotechnol Rep 8:124–132

    Article  Google Scholar 

  • Maruthiah T, Somanath B, Jasmin JV, Immanuel G, Palavesam A (2016) Production, purification and characterization of halophilic organic solvent tolerant protease from marine crustacean shell wastes and its efficacy on deproteinization. 3 Biotech 6:157

    Article  PubMed  PubMed Central  Google Scholar 

  • McDonald JH (2010) Temperature adaptation at homologous sites in proteins from nine thermophile–mesophile species pairs. Genome Biol Evol 2:267–276

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Menéndez-Arias L, Argosf P (1989) Engineering protein thermal stability: sequence statistics point to residue substitutions in α-helices. J Mol Biol 206:397–406

    Article  PubMed  Google Scholar 

  • Morikawa M, Izawa Y, Rashid N, Hoaki T, Imanaka T (1994) Purification and characterization of a thermostable thiol protease from a newly isolated hyperthermophilic Pyrococcus sp. Appl Environ Microbiol 60:4559–4566

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ni X, Chi Z, Ma C, Madzak C (2008) Cloning, characterization, and expression of the gene encoding alkaline protease in the marine yeast Aureobasidium pullulans 10. Mar Biotechnol 10:319–327

    Article  CAS  PubMed  Google Scholar 

  • Ni X, Yue L, Chi Z, Li J, Wang X, Madzak C (2009) Alkaline protease gene cloning from the marine yeast Aureobasidium pullulans HN2-3 and the protease surface display on Yarrowia lipolytica for bioactive peptide production. Mar Biotechnol 11:81–89

    Article  CAS  PubMed  Google Scholar 

  • Niehaus F, Bertoldo C, Kähler M, Antranikian G (1999) Extremophiles as a source of novel enzymes for industrial application. Appl Microbiol Biotechnol 51:711–729

    Article  CAS  PubMed  Google Scholar 

  • Norde W, Zoungrana T (1998) Surface-induced changes in the structure and activity of enzymes physically immobilized at solid/liquid interfaces. Biotechnol Appl Biochem 28:133–143

    CAS  PubMed  Google Scholar 

  • Nunoura T, Oida H, Miyazaki M, Suzuki Y, Takai K, Horikoshi K (2007) Desulfothermus okinawensis sp. nov., a thermophilic and heterotrophic sulfate-reducing bacterium isolated from a deep-sea hydrothermal field. Int J Syst Evol Microbiol 57:2360–2364

    Article  CAS  PubMed  Google Scholar 

  • Ohta Y (1967) Thermostable protease from thermophilic bacteria II. Studies on the stability of the protease. J Biol Chem 242:509–515

    CAS  PubMed  Google Scholar 

  • Ong PS, Gaucher GM (1976) Production, purification and characterization of thermomycolase, the extracellular serine protease of the thermophilic fungus Malbranchea pulchella var. sulfurea. Can J Microbiol 22:165–176

    Article  CAS  PubMed  Google Scholar 

  • Pantazaki A, Pritsa A, Kyriakidis D (2002) Biotechnologically relevant enzymes from Thermus thermophilus. Appl Microbiol Biotechnol 58:1–12

    Article  CAS  PubMed  Google Scholar 

  • Patel S (2017a) A critical review on serine protease: key immune manipulator and pathology mediator. Allergol Immunopathol 45(6):579–591. https://doi.org/10.1016/j.aller.2016.10.011

    Article  CAS  Google Scholar 

  • Patel S (2017b) Pathogenicity-associated protein domains: the fiercely-conserved evolutionary signatures. Gene Rep 7:127–141. https://doi.org/10.1016/j.genrep.2017.04.004

    Article  Google Scholar 

  • Patel S, Rauf A, Meher BR (2017) In silico analysis of ChtBD3 domain to find its role in bacterial pathogenesis and beyond. Microb Pathog 110:519–526

    Article  CAS  PubMed  Google Scholar 

  • Potumarthi R, Ch S, Jetty A (2007) Alkaline protease production by submerged fermentation in stirred tank reactor using Bacillus licheniformis NCIM-2042: effect of aeration and agitation regimes. Biochem Eng J 34:185–192

    Article  CAS  Google Scholar 

  • Prakash M, Banik RM, Koch-Brandt C (2005) Purification and characterization of Bacillus cereus protease suitable for detergent industry. Appl Biochem Biotechnol 127:143–155

    Article  CAS  PubMed  Google Scholar 

  • Ramesh S, Rajesh M, Mathivanan N (2009) Characterization of a thermostable alkaline protease produced by marine Streptomyces fungicidicus MML1614. Bioprocess Biosyst Eng 32:791–800

    Article  CAS  PubMed  Google Scholar 

  • Rao MB, Tanksale AM, Ghatge MS, Deshpande VV (1998a) Molecular and biotechnological aspects of microbial proteases. Microbiol Mol Biol Rev 62:597–635

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rao SV, Anderson KW, Bachas LG (1998b) Oriented immobilization of proteins. Microchim Acta 128:127–143

    Article  CAS  Google Scholar 

  • Roche RS, Voordouw G, Matthews BW (1978) The structural and functional roles of metal ions in thermolysin. CRC Crit Rev Biochem 5:1–23

    Article  CAS  PubMed  Google Scholar 

  • Russell RJ, Gerike U, Danson MJ, Hough DW, Taylor GL (1998) Structural adaptations of the cold-active citrate synthase from an Antarctic bacterium. Structure 6:351–361

    Article  CAS  PubMed  Google Scholar 

  • Sako Y, Nakagawa S, Takai K, Horikoshi K (2003) Marinithermus hydrothermalis gen. nov., sp. nov., a strictly aerobic, thermophilic bacterium from a deep-sea hydrothermal vent chimney. Int J Syst Evol Microbiol 53:59–65

    Article  CAS  PubMed  Google Scholar 

  • Salleh A, Basri M, Razak C (1977) The effect of temperature on the protease from Bacillus stearothermophilus strain F1. Mal J Biochem Mol Biol 2:37–41

    Google Scholar 

  • Sana B, Ghosh D, Saha M, Mukherjee J (2006) Purification and characterization of a salt, solvent, detergent and bleach tolerant protease from a new gamma-Proteobacterium isolated from the marine environment of the Sundarbans. Process Biochem 41:208–215

    Article  CAS  Google Scholar 

  • Sanman LE, Bogyo M (2014) Activity-based profiling of proteases. Annu Rev Biochem 83:249–273

    Article  CAS  PubMed  Google Scholar 

  • Segerer AH, Burggraf S, Fiala G, Huber G, Huber R, Pley U, Stetter KO (1993) Life in hot springs and hydrothermal vents. Orig Life Evol Biosph 23:77–90

    Article  CAS  PubMed  Google Scholar 

  • Shanmugavel M, Vasantharaj S, Saathiyavimal S, Gnanamani A (2016) Application of an alkaline protease in biological waste processing: an eco-friendly approach. Int J Biosci Nanosci (IJBSANS) 3:19–24

    Google Scholar 

  • Sievert SM, Kuever J (2000) Desulfacinum hydrothermale sp. nov., a thermophilic, sulfate-reducing bacterium from geothermally heated sediments near Milos Island (Greece). Int J Syst Evol Microbiol 50:1239–1246

    Article  CAS  PubMed  Google Scholar 

  • Simpson HD, Haufler UR, Daniel RM (1991) An extremely thermostable xylanase from the thermophilic eubacterium Thermotoga. Biochem J 277:413–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slobodkina G, Kolganova T, Tourova T, Kostrikina N, Jeanthon C, Bonch-Osmolovskaya E, Slobodkin A (2008) Clostridium tepidiprofundi sp. nov., a moderately thermophilic bacterium from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 58:852–855

    Article  CAS  PubMed  Google Scholar 

  • Sokolova T, Gonzalez J, Kostrikina N, Chernyh N, Tourova T, Kato C, Bonch-Osmolovskaya E, Robb F (2001) Carboxydobrachium pacificum gen. nov., sp. nov., a new anaerobic, thermophilic, CO-utilizing marine bacterium from Okinawa Trough. Int J Syst Evol Microbiol 51:141–149

    Article  CAS  PubMed  Google Scholar 

  • Sookkheo B, Sinchaikul S, Phutrakul S, Chen S-T (2000) Purification and characterization of the highly thermostable proteases from Bacillus stearothermophilus TLS33. Protein Expr Purif 20:142–151

    Article  CAS  PubMed  Google Scholar 

  • Souza PMd, Bittencourt MLdA, Caprara CC, Freitas Md, Almeida RPCd, Silveira D, Fonseca YM, Ferreira Filho EX, Pessoa Junior A, Magalhães PO (2015) A biotechnology perspective of fungal proteases. Braz J Microbiol 46:337–346

    Article  PubMed  PubMed Central  Google Scholar 

  • Srinivasan M, Rele MV (1999) Microbial xylanases for paper industry. Curr Sci 77:137–142

    CAS  Google Scholar 

  • Sterner Rh, Liebl W (2001) Thermophilic adaptation of proteins. Crit Rev Biochem Mol Biol 36:39–106

    Article  CAS  PubMed  Google Scholar 

  • Synowiecki J, Porta R, Pierro PD, Mariniello L (2008) Thermostable enzymes in food processing. In: Enzymes as additives or processing aids, pp 29–54

  • Takai K, Sugai A, Itoh T, Horikoshi K (2000) Palaeococcus ferrophilus gen. nov., sp. nov., a barophilic, hyperthermophilic archaeon from a deep-sea hydrothermal vent chimney. Int J Syst Evol Microbiol 50:489–500

    Article  CAS  PubMed  Google Scholar 

  • Trincone A (2013) Biocatalytic processes using marine biocatalysts: ten cases in point. Curr Org Chem 17:1058–1066

    Article  CAS  Google Scholar 

  • Turk B, Turk D, Turk V (2012) Protease signalling: the cutting edge. EMBO J 31:1630–1643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Unsworth LD, van der Oost J, Koutsopoulos S (2007) Hyperthermophilic enzymes—stability, activity and implementation strategies for high temperature applications. FEBS J 274:4044–4056

    Article  CAS  PubMed  Google Scholar 

  • Vertriani C, Speck M, Ellor S, Lutz R, Starovoytov V (2003) Thermovibrio ammoniificans sp. nov., a thermophilic, chemolithotrophic, nitrate ammonifying bacterium from deep-sea hydrothermal vents. Int J Syst Evol Microbiol 54:175–181

    Article  CAS  Google Scholar 

  • Vieille C, Zeikus GJ (2001) Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol Mol Biol Rev 65:1–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang S-L, Yeh P-Y (2006) Production of a surfactant-and solvent-stable alkaliphilic protease by bioconversion of shrimp shell wastes fermented by Bacillus subtilis TKU007. Process Biochem 41:1545–1552

    Article  CAS  Google Scholar 

  • Wang S-L, Chio Y-H, Yen Y-H, Wang C-L (2007) Two novel surfactant-stable alkaline proteases from Vibrio fluvialis TKU005 and their applications. Enzyme Microb Technol 40:1213–1220

    Article  CAS  Google Scholar 

  • Wery N, Lesongeur F, Pignet P, Derennes V, Cambon-Bonavita M-A, Godfroy A, Barbier G (2001) Marinitoga camini gen. nov., sp. nov., a rod-shaped bacterium belonging to the order Thermotogales, isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 51:495–504

    Article  CAS  PubMed  Google Scholar 

  • Zeinali F, Homaei A, Kamrani E (2015) Sources of marine superoxide dismutases: characteristics and applications. Int J Biol Macromol 79:627–637

    Article  CAS  PubMed  Google Scholar 

  • Zhan D, Sun J, Feng Y, Han W (2014) Theoretical study on the allosteric regulation of an oligomeric protease from Pyrococcus horikoshii by Cl ion. Molecules 19:1828–1842

    Article  PubMed  CAS  Google Scholar 

  • Zhao H, Wood AG, Widdel F, Bryant MP (1988) An extremely thermophilic Methanococcus from a deep sea hydrothermal vent and its plasmid. Arch Microbiol 150:178–183

    Article  CAS  Google Scholar 

  • Zuber H (1988) Temperature adaptation of lactate dehydrogenase structural, functional and genetic aspects. Biophys Chem 29:171–179

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to declare their appreciation to the research council of the University of Hormozgan. No funding was received for this literature review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Homaei.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by S. Albers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barzkar, N., Homaei, A., Hemmati, R. et al. Thermostable marine microbial proteases for industrial applications: scopes and risks. Extremophiles 22, 335–346 (2018). https://doi.org/10.1007/s00792-018-1009-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-018-1009-8

Keywords

Navigation