Skip to main content
Log in

Characterization of Afp1, an antifreeze protein from the psychrophilic yeast Glaciozyma antarctica PI12

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

The psychrophilic yeast Glaciozyma antarctica demonstrated high antifreeze activity in its culture filtrate. The culture filtrate exhibited both thermal hysteresis (TH) and ice recrystallization inhibition (RI) properties. The TH of 0.1 °C was comparable to that previously reported for bacteria and fungi. A genome sequence survey of the G. antarctica genome identified a novel antifreeze protein gene. The cDNA encoded a 177 amino acid protein with 30 % similarity to a fungal antifreeze protein from Typhula ishikariensis. The expression levels of AFP1 were quantified via real time-quantitative polymerase chain reaction (RT-qPCR), and the highest expression levels were detected within 6 h of growth at −12 °C. The cDNA of the antifreeze protein was cloned into an Escherichia coli expression system. Expression of recombinant Afp1 in E. coli resulted in the formation of inclusion bodies that were subsequently denatured by treatment with urea and allowed to refold in vitro. Activity assays of the recombinant Afp1 confirmed the antifreeze protein properties with a high TH value of 0.08 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Amir G, Rubinsky B, Kassif Y, Horowitz L, Smolinsky AK, Lavee J (2003) Preservation of myocyte structure and mitochondrial integrity in subzero cryopreservation of mammalian hearts for transplantation using antifreeze proteins—an electron microscopy study. Eur J Cardiothorac Surg 24(2):292–297

    Article  PubMed  Google Scholar 

  • Baardsnes J, Kondejewski LH, Hodges RS, Chao H, Kay C, Davies PL (1999) New ice-binding face for type I antifreeze protein. FEBS Lett 463(1–2):87–91

    Article  PubMed  CAS  Google Scholar 

  • Barrett J (2001) Thermal hysteresis proteins. Int J Biochem Cell Biol 33(2):105–117

    Article  PubMed  CAS  Google Scholar 

  • Bendtsen DJ, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340(4):783–795

    Article  PubMed  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009) The MIQE guidelines: minimum information for publication of quantitative real-time pcr experiments. Clin Chem 55(4):611–622

    Article  PubMed  CAS  Google Scholar 

  • Chao H, Davies PL, Carpenter JF (1996) Effects of antifreeze proteins on red blood cell survival during cryopreservation. J Exp Biol 199(9):2071–2076

    PubMed  CAS  Google Scholar 

  • D’Amico S, Collins T, Marx J-C, Feller G, Gerday C (2006) Psychrophilic microorganisms: challenges for life. EMBO Rep 7(4):385–389

    Article  PubMed  Google Scholar 

  • DeVries AL (1986) Antifreeze glycopeptides and peptides: interactions with ice and water. Methods Enzymol 127:293–303

    Article  PubMed  CAS  Google Scholar 

  • DeVries AL, Komatsu SK, Feeney RE (1970) Chemical and physical properties of freezing point-depressing glycoproteins from antarctic fishes. J Biol Chem 245(11):2901–2908

    PubMed  CAS  Google Scholar 

  • Doucet D, Tyshenko MG, Davies PL, Walker VK (2002) A family of expressed antifreeze protein genes from the moth, Choristoneura fumiferana. Eur J Biochem 269(1):38–46

    Article  PubMed  CAS  Google Scholar 

  • Doxey AC, Yaish MW, Griffith M, McConkey BJ (2006) Ordered surface carbons distinguish antifreeze proteins and their ice-binding regions. Nat Biotech 24(7):852–855

    Article  CAS  Google Scholar 

  • Ewart KV, Lin Q, Hew CL (1999) Structure, function and evolution of antifreeze proteins. Cell Mol Life Sci 55(2):271–283

    Article  PubMed  CAS  Google Scholar 

  • Fletcher GL, Hew CL, Davies PL (2001) Antifreeze proteins of teleost fishes. Annu Rev Physiol 63(1):359–390

    Article  PubMed  CAS  Google Scholar 

  • Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. Humana Press, Totowa

    Google Scholar 

  • Gilbert JA, Davies PL, Laybourn-Parry J (2005) A hyperactive, Ca2+-dependent antifreeze protein in an Antarctic bacterium. FEMS Microbiol Lett 245(1):67–72

    Article  PubMed  CAS  Google Scholar 

  • Graham LA, Liou Y-C, Walker VK, Davies PL (1997) Hyperactive antifreeze protein from beetles. Nature 388(6644):727–728

    Article  PubMed  CAS  Google Scholar 

  • Griffith M, Yaish MWF (2004) Antifreeze proteins in overwintering plants: a tale of two activities. Trends Plant Sci 9(8):399–405

    Article  PubMed  CAS  Google Scholar 

  • Hays LM, Feeney RE, Crowe LM, Crowe JH, Oliver AE (1996) Antifreeze glycoproteins inhibit leakage from liposomes during thermotropic phase transitions. Proc Natl Acad Sci USA 93(13):6835–6840

    Article  PubMed  CAS  Google Scholar 

  • Hew CL, Yang DSC (1992) Protein interaction with ice. Eur J Biochem 203(1–2):33–42

    Article  PubMed  CAS  Google Scholar 

  • Hoshino T, Kiriaki M, Ohgiya S, Fujiwara M, Kondo H, Nishimiya Y, Yumoto I, Tsuda S (2003) Antifreeze proteins from snow mold fungi. Can J Bot 81(12):1175–1181

    Article  CAS  Google Scholar 

  • Hsiao KC, Cheng CH, Fernandes IE, Detrich HW, DeVries AL (1990) An antifreeze glycopeptide gene from the antarctic cod Notothenia coriiceps neglecta encodes a polyprotein of high peptide copy number. Proc Natl Acad Sci USA 87(23):9265–9269

    Article  PubMed  CAS  Google Scholar 

  • Idicula-Thomas S, Balaji PV (2005) Understanding the relationship between the primary structure of proteins and its propensity to be soluble on overexpression in Escherichia coli. Prot Sci 14(3):582–592

    Article  CAS  Google Scholar 

  • Jae-Shin K, James AR (2004) Reduction of freeze-thaw-induced hemolysis of red blood cells by an algal ice-binding protein. Cryoletters 25(5):307–310

    Google Scholar 

  • Jia Z, Davies PL (2002) Antifreeze proteins: an unusual receptor–ligand interaction. Trends Biochem Sci 27(2):101–106

    Article  PubMed  CAS  Google Scholar 

  • Kawahara H, Iwanaka Y, Higa S, Muryoi N, Sato M, Honda M, Omura H, Obata H (2007) A novel, intracellular antifreeze protein in an antarctic bacterium, Flavobacterium xanthum. Cryoletters 28(1):39–49

    PubMed  CAS  Google Scholar 

  • Knight CA, Driggers E, DeVries AL (1993) Adsorption to ice of fish antifreeze glycopeptides 7 and 8. Biophys J 64(1):252–259

    Article  PubMed  CAS  Google Scholar 

  • Kondo H, Hanada Y, Sugimoto H, Hoshino T, Garnham CP, Davies PL, Tsuda S (2012) Ice-binding site of snow mold fungus antifreeze protein deviates from structural regularity and high conservation. PNAS 109(24):9360–9365

    Article  PubMed  CAS  Google Scholar 

  • Kuiper MJ, Davies PL, Walker VK (2001) A theoretical model of a plant antifreeze protein from Lolium perenne. Biophys J 81(6):3560–3565

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259):680–685

    Article  PubMed  CAS  Google Scholar 

  • Lee JK, Park KS, Park S, Park H, Song YH, Kang S-H, Kim HJ (2010) An extracellular ice-binding glycoprotein from an Arctic psychrophilic yeast. Cryobiology 60(2):222–228

    Article  PubMed  CAS  Google Scholar 

  • Lee JH, Park AK, Do H, Park KS, Moh SH, Chi YM, Kim HJ (2012) Structural basis for antifreeze activity of ice-binding protein from arctic yeast. J Biol Chem 287(14):11460–11468

    Article  PubMed  CAS  Google Scholar 

  • Li B, Sun D-W (2002) Novel methods for rapid freezing and thawing of foods—a review. J Food Eng 54(3):175–182

    Article  Google Scholar 

  • Liou Y-C, Thibault P, Walker VK, Davies PL, Graham LA (1999) A complex family of highly heterogeneous and internally repetitive hyperactive antifreeze proteins from the beetle Tenebrio molitor. Biochemistry 38(35):11415–11424

    Article  PubMed  CAS  Google Scholar 

  • Morita RY (1975) Psychrophilic bacteria. Bacteriol Rev 39(2):144–167

    PubMed  CAS  Google Scholar 

  • Muldrew K, Rewcastle J, Donnelly BJ, Saliken JC, Liang S, Goldie S, Olson M, Baissalov R, Sandison G (2001) Flounder antifreeze peptides increase the efficacy of cryosurgery. Cryobiology 42(3):182–189

    Article  PubMed  CAS  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8(19):4321–4326

    Article  PubMed  CAS  Google Scholar 

  • Muryoi N, Sato M, Kaneko S, Kawahara H, Obata H, Yaish MWF, Griffith M, Glick BR (2004) Cloning and expression of afpA, a gene encoding an antifreeze protein from the arctic plant growth-promoting rhizobacterium Pseudomonas putida GR12-2. J Bacteriol 186(17):5661–5671

    Article  PubMed  CAS  Google Scholar 

  • Ramli A, Mahadi N, Rabu A, Murad A, Bakar F, Illias R (2011) Molecular cloning, expression and biochemical characterisation of a cold-adapted novel recombinant chitinase from Glaciozyma antarctica PI12. Microb Cell Fact 10(1):94

    Article  PubMed  CAS  Google Scholar 

  • Raymond JA, Fritsen C, Shen K (2007) An ice-binding protein from an Antarctic sea ice bacterium. FEMS Microbiol Ecol 61(2):214–221

    Article  PubMed  CAS  Google Scholar 

  • Regand A, Goff HD (2006) Ice recrystallization inhibition in ice cream as affected by ice structuring proteins from winter wheat grass. J Dairy Sci 89(1):49–57

    Article  PubMed  CAS  Google Scholar 

  • Rodrigues DF, Tiedje JM (2008) Coping with our cold planet. Appl Environ Microbiol 74(6):1677–1686

    Article  PubMed  CAS  Google Scholar 

  • Snider CS, Hsiang T, Zhao G, Griffith M (2000) Role of ice nucleation and antifreeze activities in pathogenesis and growth of snow molds. Phytopathology 90(4):354–361

    Article  PubMed  CAS  Google Scholar 

  • Strom CS, Liu XY, Jia Z (2005) Why does insect antifreeze protein from Tenebrio molitor produce pyramidal ice crystallites? Biophys J 89(4):2618–2627

    Article  PubMed  CAS  Google Scholar 

  • Venketesh S, Dayananda C (2008) Properties, potentials, and prospects of antifreeze proteins. Crit Rev Biotechnol 28(1):57–82

    Article  PubMed  CAS  Google Scholar 

  • Wu DW, Duman JG, Cheng C-HC, Castellino FJ (1991) Purification and characterization of antifreeze proteins from larvae of the beetle Dendroides canadensis. J Comp Physiol B 161(3):271–278

    Article  CAS  Google Scholar 

  • Xiao N, Suzuki K, Nishimiya Y, Kondo H, Miura A, Tsuda S, Hoshino T (2010) Comparison of functional properties of two fungal antifreeze proteins from Antarctomyces psychrotrophicus and Typhula ishikariensis. FEBS J 277(2):394–403

    Article  PubMed  CAS  Google Scholar 

  • Xu H, Griffith M, Patten CL, Glick BR (1998) Isolation and characterization of an antifreeze protein with ice nucleation activity from the plant growth promoting rhizobacterium Pseudomonas putida GR12-2. Can J Microbiol 44(1):64–73

    CAS  Google Scholar 

  • Yu X-M, Griffith M (1999) Antifreeze proteins in winter rye leaves form oligomeric complexes. Plant Physiol 119(4):1361–1370

    Article  PubMed  CAS  Google Scholar 

  • Zhang C, Zhang H, Wang L (2007) Effect of carrot (Daucus carota) antifreeze proteins on the fermentation capacity of frozen dough. Food Res Int 40(6):763–769

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by the Ministry of Science, Technology and Innovation (MOSTI), Malaysia under the research grants UKM-MGI-NBD-0015-2007 and 07-05-MGI-GMB014. We acknowledge support given by the Australian Antarctic Division and the Malaysian Antarctic Research Programme (MARP) of the Academy of Science, Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul Munir Abdul Murad.

Additional information

Communicated by F. Robb.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hashim, N.H.F., Bharudin, I., Nguong, D.L.S. et al. Characterization of Afp1, an antifreeze protein from the psychrophilic yeast Glaciozyma antarctica PI12. Extremophiles 17, 63–73 (2013). https://doi.org/10.1007/s00792-012-0494-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-012-0494-4

Keywords

Navigation