Skip to main content
Log in

Bacterial diversity in Cr(VI) and Cr(III)-contaminated industrial wastewaters

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

The bacterial community structure of a chromium water bath, a chromium drainage waste system, a chromium pretreatment tank, and a trivalent chromium precipitation tank from the Hellenic Aerospace Industry S.A. was assessed using 16S rRNA libraries and a high-density DNA microarray (PhyloChip). 16S rRNA libraries revealed a bacterial diversity consisting of 14 distinct operational taxonomic units belonging to five bacterial phyla: Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Actinobacteria, and Bacteroidetes. However, employing a novel microarray-based approach (PhyloChip), a high bacterial diversity consisting of 30 different phyla was revealed, with representatives of 181 different families. This made it possible to identify a core set of genera present in all wastewater treatment stages examined, consisting of members of Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Deltaproteobacteria, Epsilonproteobacteria, and Bacteroidetes. In the chromium pretreatment tank, where the concentration of Cr(VI) is high (2.3 mg/l), we identified the presence of Pseudomonadales, Actinomycetales, and Enterobacteriales in abundance. In the chromium precipitation tank, where the concentration of Cr(III) is high, the dominant bacteria consortia were replaced by members of Rhodocyclales and Chloroflexi. The bacterial community structure changed significantly with changes in the chromium concentration. This in-depth analysis should prove useful for the design and development of improved bioremediation strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abulencia CB, Wyborski DL, Garcia JA, Podar M, Chen W, Chang SH, Chang HW, Watson D, Brodie EL, Hazen TC, Keller M (2006) Environmental whole-genome amplification to access microbial populations in contaminated sediments. Appl Environ Microbiol 72:3291–3301

    Article  PubMed  CAS  Google Scholar 

  • Aguilera S, Aguilar ME, Chávez MP, Lopez-Meza JE, Pedraza-Reyes M, Campos-Garcia J, Cervantes C (2004) Essential residues in the chromate transporter ChrA of Pseudomonas aeruginosa. FEMS Microbiol Lett 232:107–112

    Article  PubMed  CAS  Google Scholar 

  • Anderson RA (1997) Chromium as an essential nutrient for humans. Regul Toxicol Pharm 26:S35–S41

    Article  CAS  Google Scholar 

  • APHA (1985) Standard methods for the examination of water and wastewater. American Public Health Association, Washington, D.C.

    Google Scholar 

  • Battaglia-Brunet F, Foucher S, Denamur A, Marggraff M, Morin D, Ignatiadis I (2004) Chromate reduction at low sulphate concentration in hydrogen-fed bioreactors. Environ Technol 25:101–109

    Article  PubMed  CAS  Google Scholar 

  • Brodie EL, Desantis TZ, Joyner DC, Baek SM, Larsen JT, Andersen GL, Hazen TC, Richardson PM, Herman DJ, Tokunaga TK, Wan JM, Firestone MK (2006) Application of a high-density oligonucleotide microarray approach to study bacterial population dynamics during uranium reduction and reoxidation. Appl Environ Microbiol 72:6288–6298

    Article  PubMed  CAS  Google Scholar 

  • Cefalu WT, Hu FB (2004) Role of chromium in human health and in diabetes. Diabetes Care 27:2741–2751

    Article  PubMed  CAS  Google Scholar 

  • Chao A (1984) Nonparametric estimation of the number of classes in a population. Scand J Stat 11:265–270

    Google Scholar 

  • Chao A (1987) Estimating the population size for capture–recapture data without unequal catchability. Biometrics 43:783–791

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Hao O (1998) Microbial chromium (VI) reduction. Crit Rev Environ Sci Technol 28:219–251

    Article  Google Scholar 

  • Cheung KH, Gu J-D (2007) Mechanism of hexavalent chromium detoxification by microorganisms and bioremediation application potential: a review. Int Biodeterior Biodegrad 59:8–15

    Article  CAS  Google Scholar 

  • Cheung KH, Lai HY, Gu J-D (2006) Membrane-associated hexavalent chromium reductase of Bacillus megaterium TKW3 with induced expression. J Microbiol Biotechnol 16:855–862

    CAS  Google Scholar 

  • Chuan MC, Liu JC (1996) Release behavior of chromium from tannery sludge. Water Res 30:932–938

    Article  CAS  Google Scholar 

  • Cole JR, Chai B, Farris RJ, Wang Q, Kulam-Syed-Mohideen AS, McGarrell DM, Bandela AM, Cardenas E, Garrity GM, Tiedje JM (2007) The ribosomal database project (RDP-II): introducing myRDP space and quality controlled public data. Nucleic Acids Res 35:D169–D172

    Article  PubMed  CAS  Google Scholar 

  • Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, Kulam-Syed-Mohideen AS, McGarrell DM, Marsh T, Garrity GM, Tiedje JM (2009) The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37:D141–D145

    Article  PubMed  CAS  Google Scholar 

  • Costa M, Klein CB (2006) Toxicity and carcinogenicity of chromium compounds in humans. Crit Rev Toxicol 36:155–163

    Article  PubMed  CAS  Google Scholar 

  • Dermou E, Velissariou A, Xenos D, Vayenas DV (2005) Biological chromium(VI) reduction using a trickling filter. J Hazard Mater 126:78–85

    Article  PubMed  CAS  Google Scholar 

  • Desai C, Parikh R, Vaishnav T, Shouche Y, Madamwar D (2009) Tracking the influence of long-term chromium pollution on soil bacterial community structures by comparative analyses of 16S rRNA gene phylotypes. Res Microbiol 160:1–9

    Article  PubMed  CAS  Google Scholar 

  • DeSantis TZ, Brodie EL, Moberg JP, Zubieta IX, Piceno YM, Andersen GL (2007) High-density universal 16S rRNA microarray analysis reveals broader diversity than typical clone library when sampling the environment. Microb Ecol 53:371–383

    Article  PubMed  CAS  Google Scholar 

  • Edgar RC (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinform 5:113

    Article  Google Scholar 

  • Flanagan JL, Brodie EL, Weng L, Lynch SV, Garcia O, Brown R, Hugenholtz P, DeSantis TZ, Andersen GL, Wiener-Kronish JP, Bristow J (2007) Loss of bacterial diversity during antibiotic treatment of intubated patients colonized with Pseudomonas aeruginosa. J Clin Microbiol 45:1954–1962

    Article  PubMed  CAS  Google Scholar 

  • Fredrickson JK, Kostandarithes HM, Li SW, Plymale AE, Daly MJ (2000) Reduction of Fe(III), Cr(VI), U(VI), and Tc(VII) by Deinococcus radiodurans R1. Appl Environ Microbiol 66:2006–2011

    Article  PubMed  CAS  Google Scholar 

  • Garavaglia L, Cerdeira SB, Vullo DL (2010) Chromium (VI) biotransformation by β- and γ-Proteobacteria from natural polluted environments: a combined biological and chemical treatment for industrial wastes. J Hazard Mater 175:104–110

    Article  PubMed  CAS  Google Scholar 

  • Gopalan R, Veeramani H (1994) Studies on microbial chromate reduction by Pseudomonas sp. in aerobic continuous suspended growth cultures. Biotechnol Bioeng 43:471–476

    Article  PubMed  CAS  Google Scholar 

  • Guha H, Jayachandran K, Maurrasse F (2001) Kinetics of chromium (VI) reduction by a type strain Shewanella alga under different growth conditions. Environ Pollut 115:209–218

    Article  PubMed  CAS  Google Scholar 

  • Guha H, Jayachandran K, Maurrasse F (2003) Microbiological reduction of chromium(VI) in presence of pyrolusite-coated sand by Shewanella alga Simidu ATCC 55627 in laboratory column experiments. Chemosphere 52:175–183

    Article  PubMed  CAS  Google Scholar 

  • Hamady M, Lozupone C, Knight R (2010) Fast UniFrac: facilitating high-throughput phylogenetic analyses of microbial communities including analysis of pyrosequencing and PhyloChip data. ISME J 4:17–27

    Article  PubMed  CAS  Google Scholar 

  • Hartley JL, Bowen H (2003) PEG precipitation for selective removal of small DNA fragments. Focus 18:27

    Google Scholar 

  • Huber T, Faulkner G, Hugenholtz P (2004) Bellerophon: a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics 20:2317–2319

    Article  PubMed  CAS  Google Scholar 

  • Humphries JA, Ashe AM, Smiley JA, Johnston CG (2005) Microbial community structure and trichloroethylene degradation in groundwater. Can J Microbiol 51:433–439

    Article  PubMed  CAS  Google Scholar 

  • Ishibashi Y, Cervantes C, Silver S (1990) Chromium reduction in Pseudomonas putida. Appl Environ Microbiol 56:2268–2270

    PubMed  CAS  Google Scholar 

  • Joynt J, Bischoff M, Turco R, Konopka A, Nakatsu CH, Cindy H (2006) Microbial community analysis of soils contaminated with lead, chromium and petroleum hydrocarbons. Microb Ecol 51:209–219

    Article  PubMed  CAS  Google Scholar 

  • Kashefi K, Lovley DR (2000) Reduction of Fe(III), Mn(IV), and toxic metals at 100 degrees C by Pyrobaculum islandicum. Appl Environ Microbiol 66:1050–1056

    Article  PubMed  CAS  Google Scholar 

  • Kotaś J, Stasicka Z (2000) Chromium occurrence in the environment and methods of its speciation. Environ Pollut 107:263–283

    Article  PubMed  Google Scholar 

  • Lane D (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, p xxix

  • Li D, Li Z, Yu J, Cao N, Liu R, Yang M (2010) Characterization of bacterial community structure in a drinking water distribution system during an occurrence of red water. Appl Environ Microbiol 76:7171–7180

    Article  PubMed  CAS  Google Scholar 

  • Lovley DR (1993) Dissimilatory metal reduction. Annu Rev Microbiol 47:263–290

    Article  PubMed  CAS  Google Scholar 

  • Martins M, Faleiro ML, Chaves S, Tenreiro R, Santos E, Costa MC (2010) Anaerobic bio-removal of uranium (VI) and chromium (VI): comparison of microbial community structure. J Hazard Mater 176:1065–1072

    Article  PubMed  CAS  Google Scholar 

  • McLean JS, Beveridge TJ, Phipps D (2000) Isolation and characterization of a chromium-reducing bacterium from a chromated copper arsenate-contaminated site. Environ Microbiol 2:611–619

    Article  PubMed  CAS  Google Scholar 

  • Mehrabi S, Ekanemesang UM, Aikhionbare FO, Kimbro KS, Bender J (2001) Identification and characterization of Rhodopseudomonas spp., a purple, non-sulfur bacterium from microbial mats. Biomol Eng 18:49–56

    Article  PubMed  CAS  Google Scholar 

  • Mergeay M, Sb Monchy, Vallaeys T, Auquier V, Benotmane A, Bertin P, Taghavi S, Dunn J, Lelie D, Wattiez R (2003) Ralstonia metallidurans, a bacterium specifically adapted to toxic metals: towards a catalogue of metal-responsive genes. FEMS Microbiol Rev 27:385–410

    Article  PubMed  CAS  Google Scholar 

  • Militon C, Boucher D, Vachelard C, Perchet G, Barra V, Troquet J, Peyretaillade E, Peyret P (2010) Bacterial community changes during bioremediation of aliphatic hydrocarbon-contaminated soil. FEMS Microbiol Ecol 74:669–681

    Article  PubMed  CAS  Google Scholar 

  • Okabe S, Odagiri M, Ito T, Satoh H (2007) Succession of sulfur-oxidizing bacteria in the microbial community on corroding concrete in sewer systems. Appl Environ Microbiol 73:971–980

    Article  PubMed  CAS  Google Scholar 

  • Owlad M, Aroua MK, Daud WAW, Baroutian S (2009) Removal of hexavalent chromium-contaminated water and wastewater: a review. Water Air Soil Pollut 200:59–77

    Article  CAS  Google Scholar 

  • Park CH, Gonzalez D, Ackerley D, Keyhan M, Martin A (2002) Molecular engineering of soluble bacterial proteins with chromate reductase activity. In: Pellei M, Porta A, Hinchee RE (eds) Remediation and beneficial reuse of contaminated sediments. Batelle Press, Columbus

    Google Scholar 

  • Poljsak B, Pócsi I, Raspor P, Pesti M (2010) Interference of chromium with biological systems in yeasts and fungi: a review. J Basic Microbiol 50:21–36

    Article  PubMed  CAS  Google Scholar 

  • Rajkumar M, Nagendran R, Lee KJ, Lee WH (2005) Characterization of a novel Cr6+ reducing Pseudomonas sp. with plant growth-promoting potential. Curr Microbiol 50:266–271

    Article  PubMed  CAS  Google Scholar 

  • Roh Y, Liu SV, Li G, Huang H, Phelps TJ, Zhou J (2002) Isolation and characterization of metal-reducing thermoanaerobacter strains from deep subsurface environments of the Piceance Basin, Colorado. Appl Environ Microbiol 68:6013–6020

    Article  PubMed  CAS  Google Scholar 

  • Ryan MP, Pembroke JT, Adley CC (2007) Ralstonia pickettii in environmental biotechnology: potential and applications. J Appl Microbiol 103:754–764

    Article  PubMed  CAS  Google Scholar 

  • Sarret G, Avoscan L, Carrière M, Collins R, Geoffroy N, Carrot F, Covès J, Gouget B (2005) Chemical forms of selenium in the metal-resistant bacterium Ralstonia metallidurans CH34 exposed to selenite and selenate. Appl Environ Microbiol 71:2331–2337

    Article  PubMed  CAS  Google Scholar 

  • Schloss PD, Larget BR, Handelsman J (2004) Integration of microbial ecology and statistics: a test to compare gene libraries. Appl Environ Microbiol 70:5485–5492

    Article  PubMed  CAS  Google Scholar 

  • Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    Article  PubMed  CAS  Google Scholar 

  • Shaw AK, Halpern AL, Beeson K, Tran B, Venter JC, Martiny JBH (2008) It’s all relative: ranking the diversity of aquatic bacterial communities. Environ Microbiol 10:2200–2210

    Article  PubMed  Google Scholar 

  • Shen H, Wang YT (1995) Simultaneous chromium reduction and phenol degradation in a coculture of Escherichia coli ATCC 33456 and Pseudomonas putida DMP-1. Appl Environ Microbiol 61:2754–2758

    PubMed  CAS  Google Scholar 

  • Singleton DR, Powell SN, Sangaiah R, Gold A, Ball LM, Aitken MD (2005) Stable-isotope probing of bacteria capable of degrading salicylate, naphthalene, or phenanthrene in a bioreactor treating contaminated soil. Appl Environ Microbiol 71:1202–1209

    Article  PubMed  CAS  Google Scholar 

  • Singleton DR, Guzman Ramirez L, Aitken MD (2009) Characterization of a polycyclic aromatic hydrocarbon degradation gene cluster in a phenanthrene-degrading acidovorax strain. Appl Environ Microbiol 75:2613–2620

    Article  PubMed  CAS  Google Scholar 

  • Suzuki T, Miyata N, Horitsu H, Kawai K, Takamizawa K, Tai Y, Okazaki M (1992) NAD(P)H-dependent chromium (VI) reductase of Pseudomonas ambigua G-1: a Cr(V) intermediate is formed during the reduction of Cr(VI) to Cr(III). J Bacteriol 174:5340–5345

    PubMed  CAS  Google Scholar 

  • Tekerlekopoulou AG, Tsiamis G, Dermou E, Siozios S, Bourtzis K, Vayenas DV (2010) The effect of carbon source on microbial community structure and Cr(VI) reduction rate. Biotechnol Bioeng 107:478–487

    Article  PubMed  CAS  Google Scholar 

  • Thorenoor N, Kim Y-H, Lee C, Yu M-H, Engesser K-H (2009) A previously uncultured, paper mill Propionibacterium is able to degrade O-aryl alkyl ethers and various aromatic hydrocarbons. Chemosphere 75:1287–1293

    Article  PubMed  CAS  Google Scholar 

  • Tsiamis G, Katsaveli K, Ntougias S, Kyrpides N, Andersen G, Piceno Y, Bourtzis K (2008) Prokaryotic community profiles at different operational stages of a Greek solar saltern. Res Microbiol 159:609–627

    Article  PubMed  Google Scholar 

  • Turpeinen R, Kairesalo T, Häggblom MM (2004) Microbial community structure and activity in arsenic, chromium and copper-contaminated soils. FEMS Microbiol Ecol 47:39–50

    Article  PubMed  CAS  Google Scholar 

  • Van Nostrand JD, He Z, Zhou J (2011) Dynamics of microbes in the natural setting: development of the Geochip. In: Sen K, Ashbolt NJ (eds) Environmental microbiology: current technology and water applications. Caister Academic, Norfolk, p x

    Google Scholar 

  • Vaneechoutte M, Kämpfer P, De Baere T, Falsen E, Verschraegen G (2004) Wautersia gen. nov., a novel genus accommodating the phylogenetic lineage including Ralstonia eutropha and related species, and proposal of Ralstonia [Pseudomonas] syzygii (Roberts et al. 1990) comb. nov. Int J Syst Evol Microbiol 54:317–327

    Article  PubMed  Google Scholar 

  • Vanparys B, Heylen K, Lebbe L, De Vos P (2005) Pedobacter caeni sp. nov., a novel species isolated from a nitrifying inoculum. Int J Syst Evol Microbiol 55:1315–1318

    Article  PubMed  CAS  Google Scholar 

  • Viti C, Pace A, Giovannetti L (2003) Characterization of Cr(VI)-resistant bacteria isolated from chromium-contaminated soil by tannery activity. Curr Microbiol 46:1–5

    Article  PubMed  CAS  Google Scholar 

  • Viti C, Mini A, Ranalli G, Lustrato G, Giovannetti L (2006) Response of microbial communities to different doses of chromate in soil microcosms. Appl Soil Ecol 34:125–139

    Article  Google Scholar 

  • Wise SS, Holmes AL, Wise JP Sr (2008) Hexavalent chromium-induced DNA damage and repair mechanisms. Rev Environ Health 23:39–57

    Article  PubMed  CAS  Google Scholar 

  • Zilles JL, Peccia J, Kim MW, Hung CH, Noguera DR (2002) Involvement of Rhodocyclus-related organisms in phosphorus removal in full-scale wastewater treatment plants. Appl Environ Microbiol 68:2763–2769

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the Hellenic Aerospace Industry S.A. for providing technical information on the chromium wastewater treatment plant and for their overall support throughout this study. This work was partially supported by EU CSA-REGPROT 203590 - MicrobeGR and by intramural funds of the University of Ioannina to KB. Microarray chip raw data can be obtained by sending an e-mail to the corresponding author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kostas Bourtzis.

Additional information

Communicated by A. Oren.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 266 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katsaveli, K., Vayenas, D., Tsiamis, G. et al. Bacterial diversity in Cr(VI) and Cr(III)-contaminated industrial wastewaters. Extremophiles 16, 285–296 (2012). https://doi.org/10.1007/s00792-012-0429-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-012-0429-0

Keywords

Navigation