Skip to main content
Log in

A highly thermostable ferritin from the hyperthermophilic archaeal anaerobe Pyrococcus furiosus

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

A ferritin from the obligate anaerobe and hyperthermophilic archaeon Pyrococcus furiosus (optimal growth at 100°C) has been cloned and overproduced in Escherichia coli to one-fourth of total cell-free extract protein, and has been purified in one step to homogeneity. The ferritin (PfFtn) is structurally similar to known bacterial and eukaryal ferritins; it is a 24-mer of 20 kDa subunits, which add up to a total Mr 480 kDa. The protein belongs to the non-heme type of ferritins. The 24-mer contains approximately 17 Fe (as isolated), 2,700 Fe (fully loaded), or <1 Fe (apoprotein). Fe-loaded protein exhibits an EPR spectrum characteristic for superparamagnetic core formation. At 25°C Vmax=25 μmole core Fe3+ formed per min per mg protein when measured at 315 nm, and the K0.5=5 mM Fe(II). At 0.3 mM Fe(II) activity increases 100-fold from 25 to 85°C. The wild-type ferritin is detected in P. furiosus grown on starch. PfFtn is extremely thermostable; its activity has a half-life of 48 h at 100°C and 85 min at 120°C. No apparent melting temperature was found up to 120°C. The extreme thermostability of PfFtn has potential value for biotechnological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Adams MWW, Jenney FE Jr, Clay MD, Johnson MK (2002) Superoxide reductase: fact or fiction? J Biol Inorg Chem 7:647–652

    Article  PubMed  Google Scholar 

  • Almiron M, Link AJ, Furlong D, Kolter R (1992) A novel DNA-binding protein with regulatory and protective roles in starved Escherichia coli. Genes Dev 6:2646–2654

    PubMed  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  Google Scholar 

  • Andrews SC, Smith JM, Hawkins C, Williams JM, Harrison PM, Guest JR (1993) Overproduction, purification and characterization of the bacterioferritin of Escherichia coli and a C-terminally extended variant. Eur J Biochem 213:329–338

    Article  PubMed  Google Scholar 

  • Arendsen AF, Veenhuizen PT, Hagen WR (1995) Redox properties of the sulfhydrogenase from Pyrococcus furiosus. FEBS Lett 368:117–121

    Article  PubMed  Google Scholar 

  • Baaghil S, Lewin A, Moore GR, Le Brun NE (2003) Core formation in Escherichia coli bacterioferritin requires a functional ferroxidase center. Biochemistry 42:14047–14056

    Article  PubMed  Google Scholar 

  • Bauminger ER, Harrison PM, Hechel D, Nowik I, Treffry A (1991) Mossbauer spectroscopic investigation of structure-function relations in ferritins. Biochim Biophys Acta 1118:48–58

    PubMed  Google Scholar 

  • Boas JF, Troup GJ (1971) Electron spin resonance and Mossbauer effect studies of ferritin. Biochim Biophys Acta 229:68–74

    PubMed  Google Scholar 

  • Bonomi F, Kurtz DM, Cui X (1996) Ferroxidase activity of recombinant Desulfovibrio vulgaris rubrerythrin. J Biol Inorg Chem 1:67–72

    Article  Google Scholar 

  • Boyer RF, McCleary CJ (1987) Superoxide ion as a primary reductant in ascorbate-mediated ferritin iron release. Free Radic Biol Med 3:389–395

    Article  PubMed  Google Scholar 

  • Carrondo MA (2003) Ferritins, iron uptake and storage from the bacterioferritin viewpoint. EMBO J 22:1959–1968

    Article  PubMed  Google Scholar 

  • Cheesman MR, Kadir FH, Al-Basseet J, Al-Massad F, Farrar J, Greenwood C, Thomson AJ, Moore GR (1992) Epr and magnetic circular dichroism spectroscopic characterization of bacterioferritin from Pseudomonas aeruginosa and Azotobacter vinelandii. Biochem J 286:361–367

    PubMed  Google Scholar 

  • Cheesman MR, Le Brun NE, Kadir FH, Thomson AJ, Moore GR, Andrews SC, Guest JR, Harrison PM, Smith JM, Yewdall SJ (1993) Haem and non-haem iron sites in Escherichia coli bacterioferritin: spectroscopic and model building studies. Biochem J 292:47–56

    PubMed  Google Scholar 

  • Combet C, Blanchet C, Geourjon C, Deleage G (2000) NPS@: network protein sequence analysis. Trends Biochem Sci 25:147–150

    Article  PubMed  Google Scholar 

  • Crichton RR (2001) Inorganic biochemistry of iron metabolism: from molecular mechanisms to clinical consequences, 2nd edn. Wiley, Chichester

    Google Scholar 

  • Dawson MC, Elliott DC, Elliott WH, Jones KM (1986) Data for biochemical research, 3rd edn. Clarendon Press, Oxford

    Google Scholar 

  • Deighton N, Abu-Raqabah A, Rowland IJ, Symons MCR, Peters TJ, Ward RJ (1991) Electron paramagnetic resonance studies of a range of ferritins and haemosiderins. J Chem Soc Faraday Trans 87:3193–3197

    Article  Google Scholar 

  • Fiala G, Stetter KO (1986) Pyrococcus furiosus sp. nov. represents a novel genus of marine heterotrophic archaebacteria growing optimally at 100°C. Arch Microbiol 145:56–61

    Article  Google Scholar 

  • Frolow F, Kalb AJ, Yariv J (1994) Structure of a unique twofold symmetric haem-binding site. Nat Struct Biol 1:453–460

    Article  PubMed  Google Scholar 

  • Hagedoorn PL, Freije JR, Hagen WR (1999) Pyrococcus furiosus glyceraldehyde 3-phosphate oxidoreductase has comparable W(6+/5+) and W(5+/4+) reduction potentials and unusual [4Fe-4S] EPR properties. FEBS Lett 462:66–70

    Article  PubMed  Google Scholar 

  • Hagen WR (1992) EPR spectroscopy of iron-sulfur proteins. Adv Inorg Chem 38:165–222

    Google Scholar 

  • Hempstead PD, Yewdall SJ, Fernie AR, Lawson DM, Artymiuk PJ, Rice DW, Ford GC, Harrison PM (1997) Comparison of the three-dimensional structures of recombinant human H and horse L ferritins at high resolution. J Mol Biol 268:424–448

    Article  PubMed  Google Scholar 

  • Hennessy DJ, Reid GR, Smith FE, Thompson SL (1984) Ferene—a new spectrophotometric reagent for iron. Can J Chem 62:721–724

    Google Scholar 

  • Hosein HA, Strongin DR, Allen M, Douglas T (2004) Iron and cobalt oxide and metallic nanoparticles prepared from ferritin. Langmuir 20:10283–10287

    Article  PubMed  Google Scholar 

  • Hudson AJ, Andrews SC, Hawkins C, Williams JM, Izuhara M, Meldrum FC, Mann S, Harrison PM, Guest JR (1993) Overproduction, purification and characterization of the Escherichia coli ferritin. Eur J Biochem 218:985–995

    Article  PubMed  Google Scholar 

  • Jenney FE Jr, Verhagen MFJM, Cui X, Adams MWW (1999) Anaerobic microbes: oxygen detoxification without superoxide dismutase. Science 286:306–309

    Article  PubMed  Google Scholar 

  • Johnson E, Cascio D, Sawaya MR, Gingery M, Schröder I (2005) Crystal structures of a novel tetrahedral open pore ferritin from the hyperthemophilic archaeon Archaeoglobus fulgidus. Structure 13:637–648

    Article  PubMed  Google Scholar 

  • Le Brun NE, Cheesman MR, Thomson AJ, Moore GR, Andrews SC, Guest JR, Harrison PM (1993) An EPR investigation of non-haem iron sites in Escherichia coli bacterioferritin and their interaction with phosphate. A study using nitric oxide as a spin probe. FEBS Lett 323:261–266

    Article  PubMed  Google Scholar 

  • Levi S, Cesareni G, Arosio P, Lorenzetti R, Soria M, Sollazzo M, Albertini A, Cortese R (1987) Characterization of human ferritin H chain synthetized in Escherichia coli. Gene 51:269–274

    Article  PubMed  Google Scholar 

  • Ma K, Adams MWW (1999) A hyperactive NAD(P)H:rubredoxin oxidoreductase from the hyperthermophilic archaeon Pyrococcus furiosus. J Bacteriol 181:5530–5533

    PubMed  Google Scholar 

  • Matias PM, Tatur J, Carrondo MA, Hagen WR (2005) Crystallization and preliminary X-ray characterization of a ferritin from the hyperthermophilic archaeon and anaerobe Pyrococcus furiosus. Acta Cryst F 61:503–506

    Article  Google Scholar 

  • Pierik AJ, Hagen WR (1991) S = 9/2 EPR signals are evidence against coupling between the siroheme and the Fe/S cluster prosthetic groups in Desulfovibrio vulgaris (Hildenborough) dissimilatory sulfite reductase. Eur J Biochem 195:505–516

    Article  PubMed  Google Scholar 

  • Pierik AJ, Wolbert RB, Mutsaers PH, Hagen WR, Veeger C (1992) Purification and biochemical characterization of a putative [6Fe-6S] prismane-cluster-containing protein from Desulfovibrio vulgaris (Hildenborough). Eur J Biochem 206:697–704

    Article  PubMed  Google Scholar 

  • Reindel S, Anemüller S, Sawaryn A, Matzanke BF (2002) The DpsA-homologue of the archaeon Halobacterium salinarum is a ferritin. Biochim Biophys Acta 1598:140–146

    PubMed  Google Scholar 

  • Rocha ER, Andrews SC, Keen JN, Brock JH (1992) Isolation of a ferritin from Bacteroides fragilis. FEMS Microbiol Lett 74:207–212

    PubMed  Google Scholar 

  • Romão CV (2003) Iron metabolism in sulfate reducing bacteria. The hemoferritin from Desulfovibrio desulfuricans ATCC 27774. PhD Thesis, Universidade Nova de Lisboa

  • Romão CV, Regalla M, Xavier AV, Teixeira M, Liu MY, Le Gall J (2000) A bacterioferritin from the strict anaerobe Desulfovibrio desulfuricans ATCC 27774. Biochemistry 39:6841–6849

    Article  PubMed  Google Scholar 

  • Sleytr UB, Messner P, Pum D, Sára M (1999) Crystalline bacterial cell surface layers (S layers): from supramolecular cell structure to biomimetics and nanotechnology. Angew Chem Int Ed 38:1034–1054

    Article  Google Scholar 

  • Smith JL (2004) The physiological role of ferritin-like compounds in bacteria. Crit Rev Microbiol 30:173–185

    PubMed  Google Scholar 

  • Stillman TJ, Hempstead PD, Artymiuk PJ, Andrews SC, Hudson AJ, Treffry A, Guest JR, Harrison PM (2001) The high-resolution X-ray crystallographic structure of the ferritin (EcFtnA) of Escherichia coli; comparison with human H ferritin (HuHF) and the structures of the Fe(3+) and Zn(2+) derivatives. J Mol Biol 307:587–603

    Article  PubMed  Google Scholar 

  • Tempel W, Liu ZJ, Schubot FD, Shah A, Weinberg MV, Jenney FE Jr, Arendall WB III, Adams MWW, Richardson JS, Richardson DC, Rose JP, Wang BC (2004) Structural genomics of Pyrococcus furiosus: X-ray crystallography reveals 3D domain swapping in rubrerythrin. Proteins 57:878–882

    PubMed  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    PubMed  Google Scholar 

  • Treffry A, Harrison PM (1978) Incorporation and release of inorganic phosphate in horse spleen ferritin. Biochem J 171:313–320

    PubMed  Google Scholar 

  • Ueno T, Suzuki M, Goto T, Matsumoto T, Nagayama K, Watanabe Y (2004) Size-selective olefin hydrogenation by a Pd nanocluster provided in an apo-ferritin cage. Angew Chem Int Ed 43:2527–2530

    Article  Google Scholar 

  • Voskoboynik U (1997) Anomalous field dependence of blocking temperature of natural horse-spleen ferritin. Acta Phys Pol A 92

  • Wajnberg E, El-Jaick LJ, Linhares MP, Esquivel DM (2001) Ferromagnetic resonance of horse spleen ferritin: core blocking and surface ordering temperatures. J Magn Reson 153:69–74

    PubMed  Google Scholar 

  • Weir MP, Peters TJ, Gibson JF (1985) Electron spin resonance studies of splenic ferritin and haemosiderin. Biochim Biophys Acta 828:298–305

    PubMed  Google Scholar 

  • Zeth K, Offermann S, Essen LO, Oesterhelt D (2004) Iron-oxo clusters biomineralizing on protein surfaces: structural analysis of Halobacterium salinarum DpsA in its low- and high-iron states. Proc Natl Acad Sci USA 101:13780–13785

    PubMed  Google Scholar 

  • Zhang N, Fengyi L, Fu QJ, Tsang SC (2000) Naturally occurring ferritin as a novel catalyst for selective hydroxylation of phenol. React Kinet Catal Lett 71:393–404

    Article  Google Scholar 

  • Zhang Y, Li Y, Wang D, Dai H (2002) Imaging as-grown single-walled carbon nanotubes originated from isolated catalytic nanoparticles. Appl Phys A 74:325–328

    Article  Google Scholar 

  • Zhao G, Ceci P, Ilari A, Giangiacomo L, Laue TM, Chiancone E, Chasteen ND (2002) Iron and hydrogen peroxide detoxification properties of DNA-binding protein from starved cells A ferritin-like DNA-binding protein of Escherichia coli. J Biol Chem 277:27689–27696

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to prof. Simon de Vries for helpful discussion. We thank prof. Ana Maria Varela Coelho from the ITQB (Oeiras, Portugal) for providing mass spectrometry data. Anton Korteweg from Wageningen University (The Netherlands) is acknowledged for help with differential scanning calorimetry. This research has been financially supported by the Council for Chemical Sciences of the Netherlands Organization for Scientific Research (CW-NWO) under project number 700.51.301.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilfred R. Hagen.

Additional information

Communicated by F. Robb

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tatur, J., Hagedoorn, PL., Overeijnder, M.L. et al. A highly thermostable ferritin from the hyperthermophilic archaeal anaerobe Pyrococcus furiosus. Extremophiles 10, 139–148 (2006). https://doi.org/10.1007/s00792-005-0484-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-005-0484-x

Keywords

Navigation