Skip to main content

Advertisement

Log in

Characterization of the trehalosyl dextrin-forming enzyme from the thermophilic archaeon Sulfolobus solfataricus ATCC 35092

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

The trehalosyl dextrin-forming enzyme (TDFE) mainly catalyzes an intramolecular transglycosyl reaction to form trehalosyl dextrins from dextrins by converting the α-1,4-glucosidic linkage at the reducing end to an α-1,1-glucosidic linkage. In this study, the treY gene encoding TDFE was PCR cloned from the genomic DNA of Sulfolobus solfataricus ATCC 35092 to an expression vector with a T7 lac promoter and then expressed in Escherichia coli. The recombinant TDFE was purified sequentially by using heat treatment, ultrafiltration, and gel filtration. The obtained recombinant TDFE showed an apparent optimal pH of 5 and an optimal temperature of 75°C. The enzyme was stable in a pH range of 4.5–11, and the activity remained unchanged after a 2-h incubation at 80°C. The transglycosylation activity of TDFE was higher when using maltoheptaose as substrate than maltooligosaccharides with a low degree of polymerization (DP). However, the hydrolysis activity of TDFE became stronger when low DP maltooligosaccharides, such as maltotriose, were used as substrate. The ratios of hydrolysis activity to transglycosylation activity were in the range of 0.2–14% and increased when the DP of substrate decreased. The recombinant TDFE was found to exhibit different substrate specificity, such as its preferred substrates for the transglycosylation reaction and the ratio of hydrolysis to transglycosylation of the enzyme reacting with maltotriose, when compared with other natural or recombinant TDFEs from Sulfolobus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a, b
Fig. 2
Fig. 3a, b
Fig. 4
Fig. 5a, b
Fig. 6

Similar content being viewed by others

References

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein, utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Di Lernia I, Morana A, Ottombrino A, Fusco S, Rossi M, De Rosa M (1998) Enzymes from Sulfolobus shibatae for the production of trehalose and glucose from starch. Extremophiles 2:409–416

    PubMed  Google Scholar 

  • Fang TY, Coutinho PM, Reilly PJ, Ford C (1998a) Mutations to alter Aspergillus awamori glucoamylase selectivity. I. Tyr48Phe49→Trp, Tyr116→Trp, Tyr175→Phe, Arg241→Lys, Ser411→Ala and Ser411→Gly. Protein Eng 11:119–126

    Article  CAS  PubMed  Google Scholar 

  • Fang TY, Honzatko RB, Reilly PJ, Ford C (1998b) Mutations to alter Aspergillus awamori glucoamylase selectivity. II. Mutation of residues 119 and 121. Protein Eng 11:127–133

    Article  CAS  PubMed  Google Scholar 

  • Ford C (1999) Improving operating performance of glucoamylase by mutagenesis. Curr Opin Biotechnol 10:353–357

    Article  CAS  PubMed  Google Scholar 

  • Gueguen Y, Rolland JL, Schroeck S, Flament D, Defretin S, Saniez MH, Dietrich J (2001) Characterization of the maltooligosyl trehalose synthase from the thermophilic archaeon Sulfolobus acidocaldarius. FEMS Microbiol Lett 194:201–206

    CAS  PubMed  Google Scholar 

  • Kato M (1999) Trehalose production with a new enzymatic system from Sulfolobus solfataricus KM1. J Mol Catalysis B Enzymatic 6:223–233

    Article  CAS  Google Scholar 

  • Kato M, Miura Y, Kettoku M, Komeda T, Iwamatsu A, Kobayashi K (1996a) Reaction mechanism of a new glycosyltrehalose-hydrolyzing enzyme isolated from the hyperthermophilic archaeum, Sulfolobus solfataricus KM1. Biosci Biotechnol Biochem 60:925–928

    CAS  Google Scholar 

  • Kato M, Miura Y, Kettoku M, Shindo K, Iwamatsu A, Kobayashi K (1996b) Purification and characterization of new trehalose-producing enzymes isolated from the hyperthermophilic archaeum, Sulfolobus solfataricus KM1. Biosci Biotechnol Biochem 60:546–550

    CAS  PubMed  Google Scholar 

  • Kato M, Takehara K, Kettoku M, Kobayashi K, Shimizu T (2000) Subsite structure and catalytic mechanism of a new glycosyltrehalose-producing enzyme isolated from the hyperthermophilic archaeum Sulfolobus solfataricus KM1. Biosci Biotechnol Biochem 64:319–326

    CAS  PubMed  Google Scholar 

  • Kobayashi K, Komeda T, Miura Y, Kettoku M, Kato M (1997) Production of trehalose from starch by novel trehalose-producing enzymes from Sulfolobus solfataricus KM1. J Ferment Bioeng 83:296–298

    CAS  Google Scholar 

  • Kobayashi M, Kubota M, Matsuura Y (2003) Refined structure and functional implications of trehalose synthase from Sulfolobus acidocaldarius. J Appl Glycosci 50:1–8

    CAS  Google Scholar 

  • Kubota M, Maruta K, Fukuda S (2001) Structure and function analysis of malto-oligosyltrehalose synthase. J Appl Glycosci 48:153–161

    CAS  Google Scholar 

  • Lama L, Nicolaus B, Trincone A, Morzillo P, De Rosa M, Gambacorta A (1990) Starch conversion with immobilized thermophilic archaebacterium Sulfolobus solfataricus. Biotechnol Lett 12:431–432

    CAS  Google Scholar 

  • Leveque E, Janecekc S, Haye B, Belarbi A (2000) Thermophilic archaeal amylolytic enzymes. Enzymol Microbial Technol 26:3–14

    Article  CAS  Google Scholar 

  • MacGregor EA, Janecek S, Svensson B (2001) Relationship of sequence and structure to specificity in the alpha-amylase family of enzymes. Biochim Biophys Acta 1546:1–20

    Article  CAS  PubMed  Google Scholar 

  • Maruta K, Hattori K, Nakada T, Kubota M, Sugimoto T, Kurimoto M (1996) Cloning and sequencing of trehalose biosynthesis genes from Arthrobacter sp Q36. Biochim Biophys Acta 1289:10–13

    Article  CAS  PubMed  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicilic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    CAS  Google Scholar 

  • Mukai K, Tabuchi A, Nakada T, Shibuya T, Chaen H, Fukuda S, Kurimoto M, Tsujisaka Y (1997) Production of trehalose from starch by thermostable enzymes from Sulfolobus acidocaldarius. Starch 49:26–30

    CAS  Google Scholar 

  • Nakada T, Ikegami S, Chaen H, Kubota M, Fukuda S, Sugimoto T, Kurimoto M, Tsujisaka Y (1996a) Purification and characterization of thermostable maltooligosyl trehalose synthase from the thermoacidophilic archaebacterium Sulfolobus acidocaldarius. Biosci Biotechnol Biochem 60:263–266

    CAS  PubMed  Google Scholar 

  • Nakada T, Ikegami S, Chaen H, Kubota M, Fukuda S, Sugimoto T, Kurimoto M, Tsujisaka Y (1996b) Purification and characterization of thermostable maltooligosyl trehalose trehalohydrolase from the thermoacidophilic archaebacterium Sulfolobus acidocaldarius. Biosci Biotechnol Biochem 60:267–270

    CAS  PubMed  Google Scholar 

  • Page-Sharp M, Behm CA, Smith GD (1999) Involvement of the compatible solutes trehalose and sucrose in the response to salt stress of a cyanobacterial Scytonema species isolated from desert soils. Biochim Biophys Acta 1472:519–528

    Article  CAS  PubMed  Google Scholar 

  • de Pascale D, Sasso MP, Lernia ID, Lazzaro AD, Furia A, Farina MC, Rossi M, De Rosa M (2001) Recombinant thermophilic enzymes for trehalose and trehalosyl dextrins production. J Mol Catalysis B Enzymatic 11:777–786

    Article  Google Scholar 

  • Potts M (1994) Desiccation tolerance of prokaryotes. Microbiol Rev 58:755–805

    CAS  PubMed  Google Scholar 

  • Rabbo E, Terkildsen TC (1960) Enzymic determination of blood glucose. Scand J Clin Lab Invest 12:402–407

    PubMed  Google Scholar 

  • Richards AB, Krakowka S, Dexter LB, Schmid H, Wolterbeek AP, Waalkens-Berendsen DH, Shigoyuki A, Kurimoto M (2002) Trehalose: a review of properties, history of use and human tolerance, and results of multiple safety studies. Food Chem Toxicol 40:871–898

    Article  CAS  PubMed  Google Scholar 

  • Sharma SC (1997) A possible role of trehalose in osmotolerance and ethanol tolerance in Saccharomyces cerevisiae. FEMS Microbiol Lett 152:11–15

    Article  CAS  PubMed  Google Scholar 

  • She Q, Singh RK, Confalonieri F, Zivanovic Y, Allard G, Awayez MJ, Chan-Weiher CC, Clausen IG, Curtis BA, De Moors A, Erauso G, Fletcher C, Gordon PM, Heikamp-de Jong I, Jeffries AC, Kozera CJ, Medina N, Peng X, Thi-Ngoc HP, Redder P, Schenk ME, Theriault C, Tolstrup N, Charlebois RL, Doolittle WF, Duguet M, Gaasterland T, Garrett RA, Ragan MA, Sensen CW, Van der Oost J (2001) The complete genome of the crenarchaeon Sulfolobus solfataricus P2. Proc Natl Acad Sci USA 98:7835–7840

    CAS  PubMed  Google Scholar 

  • Singer MA, Lindquist S (1998) Thermotolerance in Saccharomyces cerevisiae: the Yin and Yang of trehalose. Trends Biotechnol 16:460–468

    CAS  PubMed  Google Scholar 

  • Wilkins MR, Gasteiger E, Bairoch A, Sanchez J-C, Williams KL, Appel RD, Hochstrasser DF (1998) Protein identification and analysis tools in the ExPASy server. In: Link AJ (ed) 2-D Proteome analysis protocols. Humana Press, Totowa, New Jersey, pp 531–552

Download references

Acknowledgements

This work was supported by grant NSC 91-2313-B-019-039 from the National Science Council at Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsuei-Yun Fang.

Additional information

Communicated by J. Wiegel

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fang, TY., Hung, XG., Shih, TY. et al. Characterization of the trehalosyl dextrin-forming enzyme from the thermophilic archaeon Sulfolobus solfataricus ATCC 35092. Extremophiles 8, 335–343 (2004). https://doi.org/10.1007/s00792-004-0393-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-004-0393-4

Keywords

Navigation