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Abstract Concurring with the shift from linking func-

tions to specific brain areas towards studying network

integration, resting state FMRI (R-FMRI) has become an

important tool for delineating the functional network

architecture of the brain. Fueled by straightforward data

collection, R-FMRI analysis methods as well as studies

reporting on R-FMRI have flourished, and already impact

research on child- and adolescent psychiatric disorders.

Here, we review R-FMRI analysis techniques and outline

current methodological debates. Furthermore, we provide

an overview of the main R-FMRI findings related to child-

and adolescent psychiatric disorders. R-FMRI research has

contributed significantly to our understanding of brain

function in child and adolescent psychiatry: existing

hypotheses based on task-based FMRI were confirmed and

new insights into the brain’s functional architecture of

disorders were established. However, results were not

always consistent. While resting state networks are robust

and reproducible, neuroimaging research in psychiatric

disorders is especially complicated by tremendous pheno-

typic heterogeneity. It is imperative that we overcome this

heterogeneity when integrating neuroimaging into the

diagnostic and treatment process. As R-FMRI allows

investigating the richness of the human functional con-

nectome and can be easily collected and aggregated into

large-scale datasets, it is clear that R-FMRI can be a

powerful tool in our quest to understand psychiatric

pathology.
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Transcending localization

The year 2012 marked the 20th anniversary of the first

published reports on functional magnetic resonance imag-

ing (FMRI) [1–3]. While significant progress has been

made in imaging sequences, stimulation paradigms and

analysis techniques, the basic principle of FMRI research

has remained the same. By stimulating a participant, for

instance by presenting a visual stimulus, researchers

attempt to induce changes in neuronal functioning. FMRI is

not capable of directly capturing neuronal activity, but
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changes in neuronal functioning are accompanied by

changes in blood flow and oxygenation level of blood

delivered to active neurons [4]. Accordingly, changes in

the blood’s oxygenation level can be captured by MRI

sequences, due to a difference in magnetic properties of

oxy- and deoxyhemoglobin. For over 20 years, measuring

the blood oxygenation level dependent (BOLD) signal

using carefully designed FMRI experiments has enabled

neuroimagers to locate specific brain regions implicated in

specific cognitive processes. However, transcending mod-

els of local processing, the FMRI community is now

shifting its interest from localizing functions to studying

how activity observed for various regions of the brain is

integrated into functional brain networks [5–7].

Concurring with the shift towards studying network

integration, resting state FMRI (R-FMRI) has become an

important tool for delineating the functional network

architecture of the brain. R-FMRI images a participant

while simply ‘‘laying still’’ or ‘‘resting’’, thereby focusing

on the brain’s spontaneous activity. Subsequent R-FMRI

analyses describe so-called resting state networks (RSN;

see Fig. 1) as defined by patterns of temporal synchrony

among brain regions [8–10]. These RSN closely resemble

networks observed during task performance [11], enabling

researchers to discern the brain’s generic, task-independent

functional architecture without a need for specialist task

paradigms.

A major advantage of R-FMRI is that the full gamut of

networks constituting the functional architecture of the

brain can be studied within a single R-FMRI dataset. RSN

exhibit high test–retest reliability between and within

subjects [12–14], as well as high reproducibility among

labs [15]. Additionally, the clinical applicability of

R-FMRI is much enhanced by the minimal participant

compliance required in contrast to the need to learn com-

plex task paradigms. This makes R-FMRI ideally suited for

studies across the lifespan and for imaging clinical cohorts

(e.g., ADHD, autism, schizophrenia, Alzheimer’s disease)

that may also include patients with low IQ.

Fueled by the ease-of-use of R-FMRI, the neuroimaging

community’s shift towards studying network integration

has influenced FMRI research in clinical populations,

especially within psychiatry. Many disorders are no longer

approached as disorders of brain function in isolated

regions but rather as a breakdown of communication and

integration among large-scale functional brain networks

[16, 17].

Methods and techniques

Functional connectivity is the most common analytic

approach to study network integration. Specifically, func-

tional connectivity aims to capture the synchronicity of the

BOLD signal across various regions of the brain, or, in

other words, assess large-scale patterns of coherent signals

[18]. One application of functional connectivity is to assess

the influence of experimental manipulations on signal

Fig. 1 Resting state networks.

Resting state functional

connectivity as revealed by

three common analysis

techniques: seed-based resting

state functional connectivity

(RSFC) of a seed in posterior

cingulate cortex (white dot); the

default mode network identified

using independent component

analysis (ICA); and amplitude

of low frequency fluctuations

(ALFF). Pos positive functional

connectivity, Neg negative

functional connectivity, LL left

lateral, RL right lateral, LM left

medial, RM right medial.

(Figure adapted from [15]). The

illustrated analysis techniques

are reviewed in the ‘‘Methods

and techniques’’ section of this

manuscript
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synchronicity. Typically applied to task-based FMRI data,

this approach is the core of a psycho-physiological inter-

action analysis (PPI) [19] or dynamic-causal modeling

(DCM) [20].

In R-FMRI data, functional connectivity simply captures

the synchronicity of spontaneous brain activity. Popular

approaches included assessing signal synchronicity

between regions of interest or grouping voxels based on the

synchronicity of their BOLD signal over the course of an

R-FMRI scan. Yet, despite the popularity of R-FMRI, little

consensus exists regarding optimal parameters and settings

to be used during image analysis or during scanning itself.

Here, we briefly report on current methodologies before

continuing with an overview of R-FMRI findings in child-

and adolescent psychiatric populations. Table 1 provides

short explanations for commonly used analysis terminol-

ogy. Terminology explained in the table is indicated by **

in the text.

Scanning protocol

Although R-FMRI can be implemented using echo-planar

imaging (EPI) protocols that are commonly used in task-

based studies, little is known about the impact of scanning

parameters on obtained connectivity measures. Typically,

R-FMRI scans are 5–10 min long. A scanning length of

6 min, with a typical whole-brain volume repetition time

(TR**) of 2–3 s, seems sufficient to obtain reliable esti-

mates of connectivity strength [21], but a length of

8–10 min (with TR = 2 s) is recommended. Longer

scanning times provide better signal-to-noise ratio and

increase the available degrees of freedom needed for high-

dimensional decompositions [11, 22]. Of note, current

developments in MRI sequences now allow imaging the

whole brain with much shorter TR (e.g., 400 ms), resulting

in (R-)FMRI data with a much greater temporal resolution.

Next to scanning parameters, the precise experimental

settings during an R-FMRI scan vary. There is no stan-

dardization of instructions (e.g., ‘just relax’ vs. ‘try not to

think about anything in particular’) and scans can be

recorded with eyes open, closed or fixated. Overall, dif-

ferent paradigms yield similar results, though for instance

eye-status affects connectivity measures, e.g., fixation and

eyes open conditions yield stronger correlations compared

to eyes closed recordings [21, 23]. As eyes open condi-

tions, in addition, provide better prevention against par-

ticipant drowsiness or even sleep, we typically recommend

fixation or eyes open recordings over eyes closed record-

ings. Furthermore, R-FMRI measurements are influenced

by prior cognitive effort [24–26], suggesting that preceding

task-related activity may linger into subsequent resting

episodes. Accordingly, the position of an R-FMRI scan

within a longer scanning session should be carefully

considered. Ideally, R-FMRI scans are purposefully posi-

tioned early in an MRI session rather than added at the end

of the MRI session to fill remaining scan time.

Image preprocessing

Most preprocessing** steps for the analysis of task-based

BOLD fMRI data can also be applied to R-FMRI data, e.g.,

discarding first volumes to allow for magnetic field

Table 1 Commonly used R-FMRI analysis terminology

Voxel 3D cube within a brain image, equivalent to a

pixel in a digital photograph

TR Repetition time: the amount of time required

to acquire one (full) brain volume (or in

MRI technical terms: the amount of time

between successive excitations of the same

image slice)

Time course or time

series

A series of measurements representing

BOLD activity (of a voxel) over time

Preprocessing Any manipulation of the data to decrease

noise and increase signal strength applied

before a model of interest is estimated

Slice timing

correction

Time-shifting or interpolating all slices in a

volume to line up with a reference slice to

correct for the fact that not all slices of a

functional volume are sampled at exactly

the same time

Realignment/

motion

correction

Reorienting of all functional images to the

same position to correct for motion during

scanning

Grand mean scaling Rescaling all participant time series to a

common mean to account for between

participant data-offsets due to the relative

magnitude of MRI data

Temporal filtering Removing data oscillating at frequencies that

are typically considered to represent noise

Frequency

aliasing

Blending of signals from different sources in

the frequency domain due to signal

undersampling as a result of typically slow

TR (of the order of 1–3 s) relative to e.g.,

physiological noise sources such as

heartbeat and respiration

Spatial smoothing Blurring of the functional images in the

spatial domain. Each voxel’s intensity is

replaced with a weighted average of its own

intensity and the intensity of its neighboring

voxels by means of a Gaussian kernel in

order to increase signal-to-noise

characteristics

Nuisance

regression

Removal of a time series associated with a

noise source (e.g., CSF signal) from the

data through linear regression. Processing is

then continued on the residuals of this

regression

Single-subject

analysis

Analysis of an individual subject’s dataset or

an individual session

Group-level analysis Analysis combining results from single-

subject analysis across multiple subjects
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stabilization, motion correction through realignment**,

grand mean scaling** and spatial smoothing** [21]. Dif-

ferent opinions exist regarding temporal filtering**. A

typical assumption in R-FMRI analyses is that spatial

information in the R-FMRI signal is driven by low fre-

quency fluctuations (\0.1 Hz), with cardiac, respiratory

and other types of noise dominating higher frequency

ranges [27]. Accordingly, most studies implement a band-

pass filtering approach sparing frequencies between 0.001

and 0.1 Hz with the intention to reduce noise and other

unwanted signals. However, recent studies suggest that the

higher frequency range should not be ignored [28, 29]. In

addition, due to frequency aliasing**, it is impossible to

fully remove noise related to cardiac and respiratory signal

from FMRI data through temporal filtering. A better

approach is to monitor these signals during data acquisition

and subsequently remove them from the data (e.g., as

implemented in RETROICOR) [30].

Next to cardiac and respiratory noise, it is typical to

account for noise related to movement, white matter and

cerebro-spinal fluid signal by means of nuisance regres-

sion** [21]. In contrast, including the global signal (mean

signal across all voxels**) as a nuisance regressor is highly

controversial. Most studies include the global mean signal

(GMS) to correct for non-neuronal physiological noise;

however, this method will bias towards finding negative

correlations between networks [31]. Whether global signal

regression (GSR) induces false negative correlations

between networks or enhances present negative correla-

tions is subject of debate [21, 30, 32–38].

Another problematic issue is the impact of in-scanner

head motion on various measures of resting state functional

connectivity, even after applying common methods for

motion correction [39–43]. This can be particularly prob-

lematic when examining developmental changes in youth

since head motion and age of the participant are highly

related [40]. Denoising by means of independent compo-

nent analysis (ICA) can be added to decrease noise,

including the impact of motion [44], yet this method

depends on identification of noise by the experimenter (for

more on ICA see below). Recent evidence showed that an

improved preprocessing pipeline substantially reduced the

effect of head motion on R-FRMI [41]. However, motion

effects cannot be completely removed and questions

remain on the validity of the approach in light of the

temporal characteristics of the R-FMRI signal [42, 45].

Computing functional connectivity

Over the past decade, methods available for defining

functional connectivity using resting state FMRI data have

increased exponentially. A wide variety of approaches now

exists, each with its own strengths and weaknesses. We

describe the most commonly applied methods, seed-based

functional connectivity and independent component ana-

lysis, and briefly touch on alternative approaches for ana-

lyzing resting state data.

Seed-based functional connectivity

First applied by Biswal and colleagues in 1995 [8], seed-

based functional connectivity assesses signal synchronicity

using regions of interest or seeds. The BOLD signal over

time is extracted for one or more ‘‘seeds’’. Next, these time

series data are entered in a correlation analysis or as a

regressor in a general linear model (GLM) to calculate the

whole-brain voxel-wise functional connectivity maps

indexing the covariance of each voxel’s time series with

the time series of the seed [18, 46]. In addition to whole-

brain analyses, seed-based functional connectivity can also

be calculated between a collection of seeds.

Seed-based functional connectivity is explicitly model-

based, since the a priori selection of one or more seeds is

necessary. Seed selection should be hypothesis driven and

can for instance be based on existing literature or an FMRI

localizer. A key feature of seed-based functional connec-

tivity is its straightforward interpretability [46]: it exposes

those regions that most strongly correlate with the seed

signal. As such, many groups apply seed-based functional

connectivity to study the functional connections of a mul-

tiplicity of seeds. However, due to the focus on a limited

number of seeds, additional outcomes might remain

uncovered and findings may be biased.

Independent component analysis

A second common approach to study functional connec-

tivity is independent component analysis (ICA). ICA is a

blind-source separation method that can be applied to many

types of data and was first applied to R-FMRI in 2003 [47].

ICA decomposes the data into a number of independent

components, based on the assumption that the data consist

of a mix of independent signals from various independent

sources. Applied to FMRI data in the spatial domain, ICA

returns several maximally independent spatial maps

(components, see Fig. 2), by grouping voxels with similar

time courses** [48].

Although no initial assumptions need to be made

regarding regions of interest, ICA requires the number of

components it should decompose to be specified or esti-

mated. Some toolboxes implement methods for automatic

dimensionality estimation (e.g., MELODIC), but more

commonly the user decides on the number of components.

As a consequence, a plethora of numbers is used, ranging

from the typical 20–30 to 150 and more [49]. A higher

number of components might decompose networks into
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multiple subnetworks. Furthermore, both relevant compo-

nents as well as noise components are extracted, posing

difficulties on component identification and interpretation.

Noise components can be removed from the data. Typi-

cally, the user needs to identify components to remove,

although automated classification techniques are being

developed [50].

Unlike seed-based functional connectivity, where vo-

xelwise regression coefficients or correlation coefficients

are forwarded from single-subject analysis** to group-

level analyses**, a group-level analysis of ICA compo-

nents is hampered by the fact that components corre-

sponding across subjects have to be identified. Different

methods for defining or extracting corresponding compo-

nents have been suggested, including template matching

[10, 51, 52], back reconstruction [53] and dual regression

[54].

ICA is typically applied in the spatial domain, but can

also be applied in the temporal domain to identify tem-

porally independent functional networks [55]. Until

recently, application of temporal ICA in FMRI has been

impractical due to the limited number of time points (and

the associated limited number of temporal degrees of

freedom) available in a typical FMRI scan. One would

have to scan for hours to obtain sufficient time points.

However, technical advances now allow collecting data

with faster volume repetition times, resulting in improved

temporal resolution (e.g., 500 ms vs. 2 s. per volume,

effectively quadrupling the temporal resolution). Applying

temporal ICA to data from such a fast FMRI sequence,

Fig. 2 Eight common and consistent RSNs identified by ICA. a RSN

located in the primary visual cortex; b extrastriate visual cortex;

c auditory and other sensory association cortices; d the somatomotor

cortex; e the ‘default mode’ network (DMN); f a network implicated

in executive control and salience processing; and (G,H) two right- and

left-lateralized fronto-parietal RSNs spatially similar to the bilateral

dorsal attention network and implicated in working memory and

cognitive attentional processes (reprinted with permission; Cole et al.

[18], Beckmann et al. [9])
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Smith and colleagues [55] described several temporal

functional modes within spatially overlapping functional

networks. Although promising, future research is required

to optimize this technique and provide a better under-

standing of its implications.

Other analysis techniques applied to R-FMRI data

Next to seed-based functional connectivity and ICA, vari-

ous other methods for analysis of resting state FMRI data

exist including amplitude of low-frequency fluctuations

(ALFF), regional homogeneity (ReHo) and graph theoret-

ical approaches. ALFF indexes the strength of lower fre-

quencies in the BOLD signal. The employed frequency

band commonly ranges from 0.01 to 0.1 Hz [56, 57].

However, ALFF might be affected by cerebral vascular and

respiratory noise. Furthermore, recent work suggests that

frequencies above 0.1 Hz also contribute to resting state

functional connectivity [28, 29].

ReHo focuses on local connectivity by measuring the

functional coherence of a certain voxel with its neighboring

voxels using ‘‘Kendall’s coefficient of concordance

(KCC)’’ [58]. ReHo is based on the hypothesis that

neighboring voxels exhibit similar temporal properties. A

drawback of this approach is that it is highly influenced by

the degree of smoothing and measures only local

coherence.

Graph theory has already contributed to many different

research areas and is now commonly applied to R-FMRI

analysis as well [59]. Graph theory measures try to capture

the brain’s architecture by considering regions of interest

(ROIs) as nodes and functional connections between the

nodes as edges. By subsequently characterizing properties

of those nodes and edges, functional brain networks can for

instance be described in terms of efficiency and modularity

[59, 60]. However, implicitly based on seed-based con-

nectivity outputs, graph theory is dependent on the

appropriate definition of network nodes, although voxel-

wise implementations are beginning to emerge [61].

Above we provided a short overview of a variety of

approaches available for the analysis of R-FMRI data. Each

method has its advantages and disadvantages and the

method of choice depends on the research question at hand.

Despite this variety of paradigms and methods, resting state

analyses have been shown to generate reproducible and

reliable results [12–14, 61, 62]. Nevertheless, future

research is necessary to optimize the resting state scanning

paradigm and preprocessing pipeline, as well as to advance

techniques for further analysis of R-MRI data. An area of

particular interest is the dynamic nature of functional

connectivity. All methods described above consider func-

tional connectivity to be a static phenomenon. However,

recent studies are beginning to highlight the dynamic

nature of functional connectivity, as even within short

time-intervals new functional associations can be formed

or existing ones can be altered [63–65].

Resting state functional connectivity in child

and adolescent psychiatry

The limited participant compliance required during

R-FMRI scanning, as well as its ability to probe multiple

functional systems using the same dataset, makes R-FMRI

ideally suited for imaging clinical populations including

children and adolescents with psychiatric disorders. Further

supported by continuing methodological advances, many

groups have recently started to apply R-FMRI to examine

brain function in child and adolescent psychiatric disorders.

R-FMRI has been mostly used to identify differences

between patients and controls as well as to correlate inter-

individual differences in resting state functional connec-

tivity to inter-individual differences on clinical measures.

Most studies focused on attention-deficit hyperactivity

disorder (ADHD), autism spectrum disorders (ASD), or

major depressive disorder (MDD). Here, we review key

findings and implications (see the supplement for literature

search criteria). A detailed summary of included literature

can be found in Table S1.

Resting state functional connectivity in attention-deficit

hyperactivity disorder

ADHD is the most prevalent neurodevelopmental psychi-

atric disorder and is clinically characterized by symptoms

of inattention, hyperactivity and impulsivity [66]. Task-

based FMRI studies have documented various ADHD-

related abnormalities in cognitive brain functioning [67,

68]. Most consistently reported are reduced activations in

prefrontal cortex (PFC), anterior cingulate cortex (ACC),

striatum, and cerebellum [67–70]. Although these FMRI

studies suggest a neurobiological basis of ADHD, the

specific mechanisms underlying atypical brain function in

ADHD remain poorly understood.

The first studies examining R-FMRI in youth with

ADHD focused on hypotheses of fronto-striatal-cerebellar

malfunction [71, 72]. One particular region of interest has

been dorsal ACC (dACC). Various task-based FMRI

studies have related dACC dysfunction to behavior (inat-

tention, impulsivity, and hyperactivity) that is typical of

ADHD (for reviews see [73–75]). Using dACC as a region

of interest in resting state functional connectivity studies

has suggested aberrant connectivity with subcortical and

cerebellar structures [72], and with regions of the default

mode network (DMN) [76]. A key role for ACC dys-

function in ADHD is further supported by many other
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R-FMRI studies reporting on aberrant ACC functional

connectivity in ADHD [56, 71, 77–81]. Next to ACC,

aberrant functional connectivity in youth with ADHD was

most frequently demonstrated in relation to the DMN [71,

76, 78–80, 82–86]. In task-based FMRI studies, the DMN

has been reported to show decreased activity during task

performance [87]. This network underlies self-referential

cognitive processes which are typically suppressed during

attentionally demanding tasks [88]. According to the

default mode hypothesis of ADHD, impaired task-related

suppression of the DMN contributes to the disruption of

cognitive performance in ADHD [88]. This ADHD DMN

hypothesis has not only been confirmed by R-FMRI results

but has also been strengthened by a recent meta-analysis of

task-based FMRI studies in ADHD [67]. This meta-ana-

lysis demonstrated increased activation of the DMN in

ADHD subjects during cognitive tasks, in addition to

decreased activation of the fronto-parietal and ventral

attention network.

Response inhibition and impulsivity are considered a

hallmark of ADHD [89]. Response inhibition is thought to

be governed by inferior frontal gyrus (IFG) [90]. Both

structural and functional MRI studies have related IFG

abnormalities to deficits in response inhibition in ADHD

(for review see [91]). Accordingly, aberrant resting state

functional connectivity of IFG has been reported in boys

with ADHD [56, 71, 84]. Impulsivity, on the other hand,

has been linked to the reward system, including orbito-

frontal cortex (OFC) and ventral striatum (e.g., for review

see [92]). Several studies have reported aberrant functional

connectivity for these regions [e.g., 80, 85]. Costa Dias and

colleagues [85] for instance reported that greater impul-

sivity as indexed by steeper delayed-reward discounting

was correlated with ADHD-related increases in functional

connectivity between ventral striatum and frontal regions.

Further, widespread patterns of ADHD-related atypical

striatal functional connectivity including connectivity with

frontal regions have been reported [78, 86, 93], as well as

correlations between measures of inhibition and striatal

connectivity [78].

Moreover, evidence of abnormal functional connectivity

between striatum and cerebellum [86] as well as aberrant

functional connectivity within the cerebellum in ADHD

has been described [56, 77, 80]. The cerebellum is thought

to modulate fronto-striatal function [94] and an increasing

number of studies indicates both structural and functional

cerebellar abnormalities in ADHD [95–97]. In addition,

decreased functional connectivity density (FCD) in cere-

bellum correlated significantly with inattention and

impulsivity/hyperactivity in children with ADHD [80].

Finally, An and colleagues [98] recently demonstrated that

an acute dose of methylphenidate normalized aberrant

fronto-parieto-cerebellar connectivity in boys with ADHD.

Considerable R-FMRI evidence thus supports atypical

functional connectivity in fronto-striatal-cerebellar cir-

cuitry and the DMN in youth with ADHD. Furthermore,

symptom severity in children and adolescents with ADHD

was found to correlate with the discovered abnormalities in

these regions [80, 86]. Findings suggesting involvement of

other brain circuits in ADHD are, however, often over-

looked [99]. These findings include atypical functional

connectivity of the medial occipital cortex/lingual gyrus

[71, 76–78, 82, 84, 100] and the motor system [56, 81, 98].

In spite of reported ADHD-related aberrant functional

connectivity, its underlying causes remain unclear. Some

studies have suggested that typical development of func-

tional connectivity might be delayed in youth with ADHD

[76, 101].

Of note, recent investigations into the effects of move-

ment-related artifacts on R-FMRI findings [39–42] have

questioned the validity of R-FMRI results in movement-

prone populations such as children with ADHD. Therefore,

caution is warranted when interpreting the findings above,

although future research is needed to assess the extent of

possible interactions between ADHD diagnosis and

movement-related artifacts during scanning.

Resting state functional connectivity in autism

spectrum disorders

Autistic disorder, Asperger disorder, and pervasive devel-

opmental disorder not otherwise specified (PDD-NOS) are

referred to as autism spectrum disorders (ASD). These

disorders are classified as pervasive disorders and charac-

terized by deficits in social communication and interaction,

as well as restricted, repetitive and stereotyped behavior,

interests, and activities [66]. Task-based FMRI studies

have repeatedly associated these characteristic behaviors

with atypical activity of various brain regions, including

the mirror neuron system [102] and frontal and insular

cortical regions [103]. In addition, Just and colleagues

[104] described decreased functional connectivity of lan-

guage-related brain regions in ASD. Accordingly, they

hypothesized that ASD arise as a consequence of global

under-connectivity. Some studies suggest that in addition

to global under-connectivity, local hyper-connectivity is

present as well [105]. As R-FMRI allows assessing mul-

tiple networks at once, it is ideally suited to further

investigate both hypotheses in ASD youth.

Supporting the global under-connectivity hypothesis of

ASD, decreased resting state connectivity of DMN struc-

tures was reported for youth with ASD compared to con-

trols [106–112]. Patients with ASD exhibited altered

development of DMN connectivity with age [109]. Fur-

thermore, DMN connectivity was correlated with measures

of social and communication skills [106–108, 110] and
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with measures of repetitive behavior and interests [106].

While these studies suggested global under-connectivity of

the DMN in ASD, under-connectivity was also reported in

functional connectivity networks related to social profi-

ciency. Gotts and colleagues [113] demonstrated wide-

spread reduced functional connectivity in youth with ASD

of regions related to social and emotional processing,

including ventromedial PFC, amygdala, hippocampus and

temporal regions. Decreased functional connectivity of

limbic regions was associated with increased social

symptom severity. Of note, while most studies focused on

under-connectivity, DMN hyper-connectivity was also

reported [108].

In light of reported language-related impairments in

ASD, toddlers with ASD were found to exhibit weaker

interhemispheric connectivity in the posterior parts of the

IFG and superior temporal gyrus (STG), commonly refer-

red to as Broca’s and Wernicke’s area, respectively [114].

Moreover, even in these young children, interhemispheric

connectivity strength was positively correlated with lan-

guage ability and negatively with autism severity. In a

ReHo study, differences between ASD and control subjects

were found in IFG and STG as well [115].

Some studies also implicated increased connectivity of

subcortical structures supporting local hyper-connectivity

and increased subcortical-cortical connectivity in the psy-

chopathology of ASD [112, 116, 117]. In addition,

increased functional connectivity between striatal subre-

gions and various associative and limbic cortices previ-

ously associated with ASD, including right STG and

insular cortex, was demonstrated [116].

Finally, accumulating evidence suggests that motor

impairments present in ASD relate to social and commu-

nicative deficits and may reflect abnormal connectivity of

brain networks underlying motor control and learning [118,

119]. Accordingly, Nebel and colleagues [120] investigated

the functional organization of the primary motor cortex

(M1) by parcellating M1 based on patterns of functional

connectivity. Functional organization of M1 was different

in children with ASD in regions corresponding with the

upper and lower limbs. The authors suggested that this

might be due to a delay in functional specialization in the

motor cortex in ASD.

Recently, the Autism Brain Imaging Data Exchange

(ABIDE) consortium analyzed R-FMRI data from 360

males with ASD and 403 male control subjects [112]. Both

hypo- and hyper-connectivity were detected in males with

ASD. However, in line with previous findings, global hypo-

connectivity dominated, particularly for cortico-cortical

and interhemispheric functional connectivity whereas

hyper-connectivity was limited to connections with sub-

cortical regions. In addition, seed-based correlations con-

firmed previous findings of decreased functional

connectivity between anterior and posterior regions of the

DMN.

To summarize, altered resting state functional connec-

tivity was demonstrated in young ASD patients and cor-

related with (social) symptom severity, suggesting a key

role for aberrant functional connectivity in the develop-

ment of ASD symptoms. Yet, there is marked heteroge-

neity in the specific networks implicated in ASD

pathology. Overall R-FMRI results provide support for the

global under-connectivity hypothesis of ASD, although

evidence suggesting short-range hyper-connectivity, pre-

dominantly in subcortical structures, has also been

provided.

Resting state functional connectivity in major

depressive disorder

Major depressive disorder (MDD) can be characterized by

severely negative mood and/or loss of interest and pleasure

for a longer period of time [66]. In line with evidence from

adults, an important feature of pediatric MDD is thought to

be emotional dysregulation. Neuroimaging studies impli-

cate the fronto-limbic neural circuitry associated with

emotion regulation in the pathophysiology of MDD.

Imbalanced activity between frontal ‘control’ regions and

limbic ‘emotion’ regions, with a key role for subgenual

ACC [121, 122], is hypothesized to result in emotional

dysregulation in MDD (for review see [123]).

Compared to healthy controls, adolescents with MDD

exhibited reduced functional connectivity between the

subgenual ACC and a network of cortical areas including

frontal and temporal regions [124]. Aberrant functional

connectivity of both subgenual ACC and posterior cingu-

late cortex (PCC) was demonstrated in children with a

history of preschool depression [125, 126]. Moreover,

increased functional connectivity between PCC and peri-

genual ACC was associated with decreased levels of cur-

rent emotion regulation and coping in these children.

Support for involvement of fronto-limbic circuitry comes

from studies reporting atypical resting state connectivity of

amygdala, insula and prefrontal cortex in youth with MDD

[127–129]. Increased depression duration was associated

with increased amygdala-pre/post central gyrus connec-

tivity strength [128].

Resting state functional connectivity in other child

psychiatric disorders

R-FMRI-based functional connectivity research in child and

adolescent psychiatric populations has focused on ADHD,

ASD and MDD. In addition, some studies have examined

functional connectivity in pediatric obsessive compulsive

disorder (OCD) and pediatric bipolar disorder (BD).
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Although the exact diagnostic criteria for pediatric BD

are subject to debate [130], BD is characterized by epi-

sodes of extreme and impairing changes in mood, thinking

and behavior [66]. Both volumetric and task-based func-

tional MRI studies have implicated altered fronto-temporal

function in pediatric BD [131–136]. Accordingly, Dick-

stein and colleagues [137] reported decreased resting state

functional connectivity between right STG and both left

SFG and middle frontal gyrus, as well as increased func-

tional connectivity between right STG and right parahip-

pocampal gyrus. Xiao and colleagues [138] reported

increased local connectivity—indexed by ReHo—in hip-

pocampus, right ACC, right caudate and left parahippo-

campal gyrus in pediatric BD patients. Decreased local

connectivity was observed in precuneus, precentral gyrus,

superior frontal gyrus (SFG), right OFC, and right STG.

Local connectivity of SFG, hippocampus and ACC was

correlated with manic symptoms.

OCD, on the other hand, is characterized by distressing

obsessions and compulsions that hinder daily life func-

tioning [66]. The medial frontal cortex (MFC) and ACC

have been related to performance monitoring and their

hyperactivity has been suggested to trigger repetitive

thoughts and behaviors in OCD [139, 140]. Patients with

OCD showed decreased ventral MFC-PCC connectivity

[141] as well as decreased functional connectivity between

striatal regions and regions in ACC and MFC [142].

Decreased left dorsal striatum-rostral ACC connectivity

was associated with increased OCD severity.

Finally, a limited number of studies examined R-FMRI

in other child psychiatric disorders including pediatric

Tourette syndrome [143], internet addiction [144], internet

gaming addiction [145] and generalized anxiety disorder

[146].

Resting state functional connectivity and diagnostic

classification

Next to describing the functional architecture of (child)

psychiatric disorders, researchers have enthusiastically

started exploring R-FMRI as a tool to characterize indi-

vidual patients and clinical heterogeneity in psychiatric

disorders. One extensive, grass-roots initiative was the

ADHD-200 global competition [147] where researchers

were challenged to predict childhood ADHD diagnosis

using over 900 R-FMRI datasets aggregated from eight

international imaging centers. A special issue in Frontiers in

Systems Neuroscience [147] bundles methods and results

from different competitors (see http://www.frontiersin.org/

Systems_Neuroscience/researchtopics/Collaborative_efforts_

aimed_at/725). Next to the enthusiasm of researchers for

disease classification approaches (over 20 teams partici-

pated), the competition results highlighted the complexity

of this approach. Maximal predication accuracy for unla-

beled datasets was 60.51 %, well above the 33 % chance-

level (three-class classifier), but far from clinical usability.

Although most competitors attained high levels of speci-

ficity, they reached only low levels of sensitivity. In other

words, most methods were overly cautious, classifying

many ADHD cases as controls (low sensitivity), but when a

case was identified as having ADHD this classification was

most often correct (high specificity). Accordingly,

researchers are beginning to accept that individual patient

classification based on the brain’s functional architecture

alone might not be feasible. Instead, further characterizing

participants beyond their functional brain architecture by

including behavioral data, structural brain measures, and

genetic information could improve our ability to support the

diagnostic process.

Future directions

Both its ease-of-use and the distributed nature of resulting

network readouts have led to common inclusion of

R-FMRI in clinically oriented FMRI protocols. Accord-

ingly, in recent years, R-FMRI studies have confirmed

prior hypotheses as well as provided new insights into the

brain’s functional architecture underlying child and ado-

lescent psychiatric disorders. However, results were not

always consistent. As the R-FMRI field expands rapidly, it

is characterized by methodological heterogeneity. Studies

increasingly report aberrant functional connectivity within

and between various networks of interest, and with a vast

variety of metrics. Unfortunately, such scattered diagnostic

findings rarely translate into clinically useful biomarkers.

Therefore, to avoid ‘blobology’ at the network level, we

need approaches that are sensitive to subtle variations,

inclusive in what they capture, specific when distinguishing

subgroups, and well validated for clinical use.

One roadblock to achieve integrated approaches is cur-

rent debate over best practices in R-FMRI preprocessing.

Should global signal correction be adopted or avoided?

How to best deal with movement-related artifacts? While

various approaches have been proposed for global signal

correction [21, 30, 32–36] and for dealing with movement-

related artifacts [39–42] debate continues over their

implementation, usefulness and impact on R-FMRI read-

outs [43, 148]. The possible influence of movement-related

artifacts on R-FMRI findings, in particular, warrants

increased attention as movement-related artifacts have

been shown to mimic developmental or disorder related

findings. As increased scientific rigor in FMRI research

should be one of our immediate goals for the future [7],

resolving these unsettled issues should be high on any (R-

)FMRI methodologist’s priority list. Likewise, replication
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of findings across processing techniques and methodolo-

gies will be our best defense against isolated clinical

findings.

In the past decade, neuroimaging shifted its focus from

localizing symptoms in certain brain areas to approaching

psychiatric disorders from a network perspective. Accord-

ingly, the desire to localize should be avoided when trying

to understand the underlying functional architecture of a

disorder. Indeed, it seems unlikely that aberrant functional

connectivity reported for a network of interest (e.g., default

mode) is limited to that network only, as within the con-

nectome [149] disturbance of network A will impact net-

work B. Therefore, clinical findings tied to certain

networks should be regarded in light of the restricted

hypotheses and focused investigations that led to them

rather than as the ‘network of origin’ for a particular dis-

order. As such, studies reporting on isolated aberrant

functional connectivity miss the opportunity to assess their

populations in terms of a communication breakdown

between integrated networks. However, it should be noted

that methods for such integrated network analysis are an

area of recent and active development.

Characterizing participants based on an integrated

assessment of the brain’s functional architecture (including

brain structure and participant behavior) will extend our

ability to stratify participants beyond simple diagnostic cat-

egories. Psychiatric neuroimagers are increasingly con-

fronted with tremendous phenotypic heterogeneity, as it is

clear that even within diagnostic subgroups patients are not

alike. While patients might exhibit similar behavioral char-

acteristics, they could have markedly different underlying

biology. Moreover, even within behaviorally defined diag-

nostic subcategories, patients can be divided into behavior-

ally distinct subgroups [150]. In addition, next to distinct

subgroups within disorders, phenotypically distinct sub-

groups can transcend diagnostic categories. Accordingly,

discovery science studies are shifting their methodology from

comparing diagnostic subgroups to detecting and character-

izing phenotypic subgroups using data-driven approaches

(e.g., community detection, clustering) or data-mining [e.g.,

151]. An example is the interest within the imaging com-

munity to develop ‘growth curves’ indexing functional con-

nectivity development [e.g., 148, 152]. The associated idea is

that, just as for typical growth curves available for weight and

height, deviation from one’s developmental curve could

suggest underlying disorders. Another example are emerging

studies that aim to assess the distinctiveness of features in

light of symptom comorbidity [e.g., 111].

Characterizing progressive communication breakdown

or network interactions as well as inter-individual variation

in the brain’s functional architecture requires large sample

sizes. While R-FMRI is straightforward to collect, sample

sizes needed for discovery science or hypothesis generation

[15] lay beyond the data-collection capacity of single labs,

especially for clinical populations. Fortunately, recent

efforts highlighted the potential of aggregating R-FMRI

datasets from multiple labs (e.g., ADHD-200: http://fcon_

1000.projects.nitrc.org/indi/adhd200/; Autism Brain Imag-

ing Data Exchange—ABIDE: http://fcon_1000.projects.

nitrc.org/indi/abide/). Indeed, as R-FMRI does not involve

complex or varying task designs, data aggregation is easier

for R-FMRI than for task-based FMRI datasets. Impor-

tantly, even in light of between-lab variability, robust

effects were observed [15, 111, 148]. Such successful data

aggregation could be used to motivate inclusion of short

R-FMRI scans in the diagnostic process of childhood psy-

chiatric disorders. However, in light of limited replication

of findings and limited diagnosis prediction accuracies (e.g.,

outcomes of the ADHD-200 competition), these R-FMRI

scans would not serve diagnostic purposes yet. Neverthe-

less, their widespread inclusion would allow gathering

large-scale datasets needed to index and ultimately over-

come phenotypic heterogeneity. For instance, one way

would be to side-step diagnosis completely and instead rank

participants on a severity continuum using a combination of

brain and behavioral data. By increasing our understanding

of clinically and neurobiologically relevant subtypes, we

ultimately create possibilities to improve the diagnostic

process and develop treatment protocols tailored to an

individual’s specific (brain-related) characteristics. To

reach this goal, we anticipate a shift in our scientific model

from assessing individuals on a single occasion to moni-

toring subsequent stages of disorder development.
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