Skip to main content
Log in

Phosphonomethyl iminodiacetic acid-conjugated cobalt oxide nanoparticles liberate Co++ ion-induced stress associated activation of TNF-α/p38 MAPK/caspase 8-caspase 3 signaling in human leukemia cells

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The aim of this work is to understand the potential health effects of metal nanoparticles by exposing human leukemic cell lines (jurkat, K562 and KG1A cells) to nanosize phosphonomethyl iminodiacetic acid coated cobalt oxide (PMIDA-CoO) NPs. The synthesized PMIDA-CoO NPs were characterized by XRD, dynamic light scattering, transmission electron microscopy and scanning electron microscopy. Our results showed that exposure of leukemic cell lines to PMIDA-CoO NPs caused reactive oxygen species (ROS) generation by increasing the concentration of free Co++ ions in cancer microenvironment. But at physiological pH, PMIDA-CoO liberates little amount of Co++ ions into media and exerts lower toxicity to normal cells up to a certain dose. PMIDA-CoO NPs caused DNA damage in leukemic cell lines, which was reflected by an increase in apoptosis of jurkat, KG-1A and K562 cells. PMIDA-CoO NPs induced apoptosis by increasing pro-inflammatory cytokines, primarily TNF-α. The in vivo study shows that PMIDA-CoO NPs were efficiently killed DLA cells. These findings have important implications for understanding the potential anticancer property induced by surface-modified cobalt oxide nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Lee JH, Huh YM, Jun YW et al (2007) Nat Med 13:95–99

    Article  CAS  PubMed  Google Scholar 

  2. Rana S, Gallo A, Srivastava RS, Misra RK (2007) Acta Biomat 3(2):233–242

    Article  CAS  Google Scholar 

  3. Sun C, Lee JS, Zhang M (2008) Adv Drug Deliv Rev 60(11):1252–1265

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Chertok B, Moffat BA, David AE et al (2008) Biomaterials 29(4):487–496

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Ahamed M, Karns M, Goodson M et al (2008) Toxicol Appl Pharmacol 233(3):404–410

    Article  CAS  PubMed  Google Scholar 

  6. Wang K, Xu JJ, Chen HY (2005) Biosens Bioelectron 20:1388–1396

    Article  CAS  PubMed  Google Scholar 

  7. Liu X, Qiu G, Li X (2005) Nanotechnology 16:3035–3040

    Article  CAS  Google Scholar 

  8. Parkes LM, Hodgson R, Lu LT, Tung LD, Robinson I, Fernig DG, Thanh NT (2008) Contrast Media Mol Imag 3:150–156

    Article  CAS  Google Scholar 

  9. Papis E, Rossi F, Raspanti M, Isabella DD, Colombo G, Milzani A, Bernardini G, Gornati R (2009) Toxicol Lett 189:253–259

    Article  CAS  PubMed  Google Scholar 

  10. Dailey JP, Phillips JP, Li C, Riffle JS (1999) J Magn Magn Mater 194:140–148

    Article  CAS  Google Scholar 

  11. Rutnakornpituk M, Baranauskas V, Riffle JS, Connolly J, Pierre TG, Dailey JP (2002) Eur Cells Mater 3:102–105

    Google Scholar 

  12. Pardoe H, Chua-anusorn W, Pierre TG, Dobson J (2001) J Magn Magn Mater 225:41–46

    Article  CAS  Google Scholar 

  13. Hubert PM, Guerrero G, Vioux A (2005) J Mater Chem 15:3761–3768

    Article  Google Scholar 

  14. Adden N, Gamble LJ, Castner DG, Hoffmann A, Gross G, Menzel H (2006) Langmuir 22:8197

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Neouze MA, Schubert U (2008) Monatsh Chem 139:183–195

    Article  CAS  Google Scholar 

  16. Ghosh T, Chattopadhyay T, Das S, Mondal S, Suresh E, Zangrando E, Das D (2011) Cryst Growth Des 11:3198–3205

    Article  CAS  Google Scholar 

  17. Mohapatra S, Mallick SK, Maiti TK, Ghosh SK, Pramanik P (2007) Nanotechnology 18:385102–385111

    Article  Google Scholar 

  18. Hudson L, Hay FC (1991) Practical immunology, 3rd edn. Blackwell scientific publications, Oxford/London/Edinburgh/Boston/Melbourne, pp 21–22

    Google Scholar 

  19. Chattopadhyay S, Dash SK, Ghosh T, Das D, Pramanik P, Roy S (2013) Cancer Nano 4:103–116

    Article  Google Scholar 

  20. Gaither LA, Eide DJ (2001) J Biol Chem 276(25):22258–22264

    Article  CAS  PubMed  Google Scholar 

  21. Hanley C, Layne J, Punnoose A, Reddy KM, Coombs I, Coombs A, Feris K, Wingett D (2008) Nanotechnology 19:295103

    Article  PubMed Central  PubMed  Google Scholar 

  22. Zhou BR, Marina G, Marina F et al (2003) Acta Pharmacol 24:193–198

    CAS  Google Scholar 

  23. Sheikpranbabu S, Kalishwaralal K, Lee KJ, Vaidyanathan R, Eom SH, Gurunathan S (2010) Biomaterials 31:1318–1329

    Article  Google Scholar 

  24. Kalimuthu K, Pandian SRK, Deepak V, Bilal M, Gurunathan S (2008) Colloid Surf B Biointerfaces 65:150–153

    Article  CAS  Google Scholar 

  25. Sriram M, Kanth S, Kalishwaralal K, Gurunathan S (2010) Int J Nanomed 5:753–762

    CAS  Google Scholar 

  26. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  27. Das M, Mishra D, Maiti TK, Basak A, Pramanik P (2008) Nanotechnology 19:415101

    Article  PubMed  Google Scholar 

  28. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R (2007) Nat Nanotechnol 2:751

    Article  CAS  PubMed  Google Scholar 

  29. Sant S, Poulin S, Hildgen P (2008) J Biomed Mater Res A 87:885–895

    Article  PubMed  Google Scholar 

  30. Foster AD, Xu L (2003) Mol Can Res 1:789–800

    CAS  Google Scholar 

  31. Barth A, Bezlyepkina N (2004) J Biol Chem 279:51888–51896

    Article  CAS  PubMed  Google Scholar 

  32. Quarles RH, Dawson RMC (1969) Bio chem J 112:795

    CAS  Google Scholar 

  33. Lovric J, Cho SJ, Winnik FM, Maysinger D (2005) Chem Biol 12:1227–1234

    Article  CAS  PubMed  Google Scholar 

  34. Resnitzky P, Bustan A, Peled A, Marikovsky Y (1988) Leuk Res 12:315–320

    Article  CAS  PubMed  Google Scholar 

  35. Sanpui P, Chattopadhyay A, Ghosh SS (2011) ACS Appl Mater Interfaces 3:218–228

    Article  CAS  PubMed  Google Scholar 

  36. Bergelson LD, Dyatlovitskaya EV, Sorokina IB, Gorkova NP (1974) Biochim Biophys Acta 360(3):361–365

    Article  CAS  PubMed  Google Scholar 

  37. Xia T, Kovochich M, Brant J, Hotze M, Sempf J, Oberley T, Sioutas C, Yeh JI, Wiesner MR, Nel AE (2006) Nano Lett 6:1794–1807

    Article  CAS  PubMed  Google Scholar 

  38. Long TC, Saleh N, Tilton RD, Lowry GV, Veronesi B (2006) Environ Sci Technol 40:4346–4352

    Article  CAS  PubMed  Google Scholar 

  39. Ryter SW, Kim HP, Hoetzel A, Park JW, Nakahira K, Wang X, Choi AM (2007) Antioxid Redox Signal 9:49–89

    Article  CAS  PubMed  Google Scholar 

  40. Carmody RJ, Cotter TG (2001) Redox Rep 6:77–90

    Article  CAS  PubMed  Google Scholar 

  41. Yang MH, Jiang JH, Yang YH, Chen XH, Shen GL, Yu RQ (2006) Biosens Bioelectron 21:1791–1797

    Article  CAS  PubMed  Google Scholar 

  42. Boudreau RT, Conrad DM, Hoskin DW (2007) Exp Mol Pathol 83:347–356

    Article  CAS  PubMed  Google Scholar 

  43. Gupta AK, Gupta M (2005) Biomaterials 26:3992–4021

    Google Scholar 

  44. Ishikawa K, Ishii H, Saito T (2006) DNA Cell Biol 25:406–411

    Article  CAS  PubMed  Google Scholar 

  45. Dong C, Flavell RA (2001) Curr Opin Hematol 8:47

    Article  CAS  PubMed  Google Scholar 

  46. Croft M (2009) Nat Rev Immunol 9:271

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Fishman MA, Perelson AS (1999) Bull Math Biol 61:403

    Article  CAS  PubMed  Google Scholar 

  48. Joshi SG, Sahni SK (2003) Histochem Cell Biol 119:463–468

    Article  CAS  PubMed  Google Scholar 

  49. Fernandes NV, Guntipalli PK, Huanbiao MO (2010) Anticancer Res 30:4937–4944

    CAS  PubMed  Google Scholar 

  50. Hibi M, Lin A, Smeal T, Minden A, Karin M (1993) Genes Dev 7:2135–2148

    Article  CAS  PubMed  Google Scholar 

  51. Chattopadhyay S, Chakraborty SP, Laha D, Baral R, Pramanik P, Roy S (2012) Cancer Nano 3:13–23

    Article  CAS  Google Scholar 

  52. Luczak MW, Zhitkovich A (2013) Free Radic Biol Med 65:262–269

    Article  CAS  PubMed  Google Scholar 

  53. Guzeloglu S, Yalcin G, Pekin M (1998) J Organomet Chem 568:143–147

    Article  CAS  Google Scholar 

  54. Xu G, Ahn J, Chang S, Eguchi M, Ogier A, Han S, Park Y, Shim C, Jang Y, Yang B, Xu A, Wang Y, Sweeney G (2012) J Biol Chem 287:4808–4817

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Armstrong JS, Steinauer KK, Hornung B, Irish JM, Lecane P, Birrell GW, Peehl DM, Knox SJ (2009) Cell Death Differ 9:252–263

    Article  Google Scholar 

  56. Azaria LH, Kirkpatrick CJ, Korenstein R, Marche PN, Maimon O, Ponti J, Romano R, Rossi F, Schindler UG, Sommer D, Uboldi C, Unger RE, Villiers C (2011) Toxicolog Sci 122:489–501

    Article  Google Scholar 

  57. Colognato R, Bonelli A, Ponti J, Farina M, Bergamaschi E, Sabbioni E (2008) Mutagenesis 23:377–382

    Article  CAS  PubMed  Google Scholar 

  58. Ponti J, Sabbioni E, Munaro B, Broggi F, Marmorato P, Franchini F (2009) Mutagenesis 24:439–445

    Article  CAS  PubMed  Google Scholar 

  59. Petrarca C, Perrone A, Verna N, Verginelli F, Ponti J, Sabbioni E (2006) Int J Immunopathol Pharmacol 19:11–14

    CAS  PubMed  Google Scholar 

  60. Levard C, Mitra S, Yang T, Jew AD, Badireddy AR, Lowry G, Brown G (2013) Environ Sci Technol 47:5738–5745

    Article  CAS  PubMed  Google Scholar 

  61. Hernandez-Flores G, Ortiz-Lazareno PC, Lerma-Diaz JM, Dominguez-Rodriguez JR, Jave-Suarez LF, Aguilar-Lemarroy AC, de Celis-Carrillo R, del Toro-Arreola S, Castellanos-Esparza YC, Bravo-Cuellar A (2011) BMC Cancer 11:483

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors express gratefulness to the Department of Biotechnology, Government of India for funding. The authors also express gratefulness to Indian Institute of Technology, Kharagpur and Vidyasagar University, Midnapore for providing the facilities to execute these studies.

Conflict of interest

Authors declare that there are no conflicts of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somenath Roy.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 70 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chattopadhyay, S., Dash, S.K., Tripathy, S. et al. Phosphonomethyl iminodiacetic acid-conjugated cobalt oxide nanoparticles liberate Co++ ion-induced stress associated activation of TNF-α/p38 MAPK/caspase 8-caspase 3 signaling in human leukemia cells. J Biol Inorg Chem 20, 123–141 (2015). https://doi.org/10.1007/s00775-014-1221-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-014-1221-7

Keywords

Navigation